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A new VOF advection algorithm is presented, termed the Stream scheme. The
algorithm uses a linear piecewise method for free surface reconstruction, coupled
to a unique fully multidimensional method of cell boundary flux integration. The
performance of the new algorithm is compared against other VOF advection algo-
rithms using a variety of standard advection tests. In general, the performance of
the Stream scheme appears superior to existing multidimensional and dimensionally
split advection algorithms. c© 2000 Academic Press

1. INTRODUCTION

The Volume of Fluid (VOF) method is a convenient and powerful tool for modelling fluid
flows which contain a free surface [10]. Under the VOF method, fluid location is recorded
using a volume of fluid function. In a single fluid calculation, this function is defined as
unity within fluid regions and zero elsewhere. In numerical fluid simulations, where the
VOF function is averaged over each computational cell, the function becomes one in cells
containing only fluid, zero in cells containing no fluid, and takes a value between these
limits in cells which contain a free surface.

The VOF method is capable of modeling flows with complex free surface geometries,
including flows where fluid volumes separate and combine, yet it is remarkably economical
in computational terms, requiring only one mesh-sized array for storing the VOF function
and an algorithm to advect the function during each computational time step. The method
used to advect the VOF function is the subject of this work.

Excellent reviews of past and present VOF advection methods have been given by Rudman
[17], Rider and Kothe [16], and Scardovelli and Zaleski [18], so only a brief overview of
some of the methods available will be given here.

As a Lagrangian invariant of the fluid, the VOF function,F , satisfies [9]

∂F

∂t
+ (V ·∇)F = 0. (1)
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Equation (1) describes the transport of a scalar quantity with the fluid, where the quantity
varies continuously from one spatial point to the next. In reality however, the VOF function
does not vary continuously from one point to the next, but rather experiences a discrete
change over the infinitesimal dimension of each free surface interface. Consequently, special
methods must be used to difference equation (1) so that diffusion of free surface interfaces
does not result [17].

One such method uses the Flux-Corrected Transport (FCT) Algorithm developed by
Zalesak [21]. The FCT algorithm was developed as a general method for advecting any scalar
quantity, but it was applied to the process of VOF advection by Rudman [17]. Under the FCT
method, Eq. (1) is differenced using a combination of first-order upwind and downwind
difference schemes. The dependence on each scheme is chosen so that the advected solution
contains no extrema that were not present in the previous time step solution. Rudman [17]
demonstrated that the FCT–VOF advection method is not as accurate as modern piecewise
linear advection methods.

The majority of VOF advection methods are not derived from a direct difference for-
mulation of Eq. (1) but are instead developed using a two-stage process. First, free surface
interfaces are “reconstructed” from the VOF data, so that a geometrical profile is found
which approximates the actual free surface location. Changes in VOF values are then calcu-
lated by integrating fluid fluxes over cell boundaries, using the geometrical profile to indicate
the location of fluid regions. The different advection algorithms based on this two-stage
process can be loosely classified according to the technique used to reconstruct the free
surfaces in each cell and by the method used to perform the boundary flux integrations [16].

VOF advection methods that represent free surface interfaces as lines directed parallel to
one of the grid coordinates are known as piecewise constant schemes. The SLIC (Simple
Line Interface Calculation) of Noh and Woodward [11] and the SURFER code of Lafaurie
et al. [8] are examples of a piecewise constant scheme.

A variation on the piecewise constant technique is the method used in the SOLA-VOF
code of Nicholset al. [10]. Under the Hirt–Nichols scheme, free surface interfaces are
orientated in directions parallel to grid coordinates but are also allowed the greater freedom
of a stair-shaped profile if local VOF distribution conditions permit. Similar algorithms
include those developed by Chorin [3] and Barr and Ashurst [2].

The alternative to representing free surface interfaces as lines parallel to one of the
grid coordinates is to orientate free surface interfaces in a direction perpendicular to the
locally evaluated VOF gradient. Free surface interfaces within each cell can then acquire
any orientation, and the geometrical profile of the fluid can more closely represent the actual
fluid geometry. Such schemes are known as piecewise linear schemes and include those
developed by Debar [4], Youngs [20], Ashgriz and Poo [1], Puckettet al. [15], Rider and
Kothe [16], and Harvie and Fletcher [6]. These schemes tend to be more complex than their
piecewise constant cousins, but they have been shown to be significantly more accurate
[7, 12, 17].

The method of integration used to determine cell boundary fluxes is also used to classify
VOF advection techniques. Under operator or dimensionally split schemes, boundary fluxes
are calculated independently in each coordinate direction, often with some type of limiter
employed to reduce possible undershoots or overshoots occurring in cell VOF values. Free
surfaces are usually reconstructed between integrations in each of the coordinate direc-
tions under this technique. The Youngs algorithms are examples of operator split schemes
[19, 20].
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Multidimensional schemes can be more accurate and efficient in calculating cell boundary
fluxes than operator split schemes [16]. Under a multidimensional scheme, cell boundary
fluxes are calculated with a dependence between fluxes calculated in each of the coordinate
directions. Example multidimensional schemes include those developed by Puckettet al.
[15], Rider and Kothe [16], and Harvie and Fletcher [6].

The Stream scheme, as developed in this study, is a piecewise linear scheme with cell
boundary fluxes integrated using a fully multidimensional technique. While the interface
reconstruction technique used by the Stream scheme is similar to methods used by other
VOF advection schemes, the multidimensional integration technique used by the Stream
scheme is quite new and unique.

In this paper, we detail and analyze the new advection scheme. This is accomplished in
three sections: The first section defines the conceptual and theoretical basis for the scheme
and outlines the solution procedure used to implement the algorithm. A comparison of
the performance of the Stream scheme against existing advection algorithms is then given,
using for comparison several standard VOF advection tests. Finally, an analysis of the errors
generated by the Stream scheme when advecting a fluid form, and associated convergence
rates, is given.

2. THE STREAM VOF ADVECTION ALGORITHM

2.1. The Basic Method

The idea behind the Stream algorithm is simple and can be summarized as follows:

1. Fluid interfaces are reconstructed in each cell using a piecewise linear interface
method.

2. A semicontinuous velocity field is defined throughout the computational region, based
on the staggered cell boundary velocities.

3. Donating regions for each cell boundary are defined by integrating back in time for
the duration of the computational time step along fluid streamlines passing through the
examined boundary.

4. Boundary fluxes are calculated as the intersection between each donating region and
all fluid locations.

The primary tasks involved in implementing the Stream algorithm are defining a suitable
velocity field, reconstructing the fluid free surfaces, and integrating along streamlines to
determine fluid volume fluxes occurring over each boundary. It is these three topics which
we now examine.

2.2. Defining the Velocity Field

The velocity at any point in a given celli , j is defined as

V(x, y) = {χbx + χy}i + {−χby− χx}j , (2)

where

χb =
ui+ 1

2
− ui− 1

2

xi+ 1
2
− xi− 1

2

= −
v j+ 1

2
− v j− 1

2

yj+ 1
2
− yj− 1

2

, (3)

χx = −χbyj− 1
2
− v j− 1

2
(4)
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and

χy = −χbxi− 1
2
+ ui− 1

2
. (5)

Integer subscripts in these equations refer to cell-centered quantities, while integer values
plus or minus a half refer to quantities located at cell upper or lower boundaries, respectively.
The velocity in thex coordinate direction isu, and that in they direction isv. Note that
the equality in Eq. (3) follows from the continuity equation applied to the examined cell,
namely

∂u

∂x
+ ∂v
∂y
=

ui+ 1
2
− ui− 1

2

xi+ 1
2
− xi− 1

2

+
v j+ 1

2
− v j− 1

2

yj+ 1
2
− yj− 1

2

= 0. (6)

The velocity field given in Eq. (2) can also be expressed in terms of the stream function,

9 = χbxy+ χxx + χyy, (7)

where the standard stream function has been defined via

u = ∂9

∂y
and v = −∂9

∂x
, (8)

and we have assumed the boundary condition for integration,9(0, 0)= 0.
Equation (2) specifies a simple velocity field which varies linearly between cell bound-

aries and satisfies the continuity equation everywhere. The normal components of the ve-
locity field at cell boundaries are continuous between cells, but the tangential components
are not. The velocity field is not continuous at cell vertex points. The velocity field discon-
tinuities would be problematic if we were to integrate exactly along streamlines from cell
vertices, but the integration method we present later avoids this inconvenience.

The stream function defined by Eq. (7) is continuous throughout the computational
domain. Note that fluid fluxes over cell boundaries are constant along the length of each
boundary, and consequently streamlines intersecting each boundary, which are separated
by equal volume fluxes, are equally spaced.

Examples of various in-cell velocity fields, represented as fluid streamlines, are shown
in Fig. 1. The cells shown in the figure have the nondimensional dimensions of 1× 1, and
the corresponding velocity field constants are shown alongside each streamline trace. Cases
(D) and (E) in Fig. 1 are the only cases withχb 6= 0—the streamlines in these two examples
are curved.

2.3. Free Surface Interface Reconstruction

A piecewise linear interface method is used by the Stream scheme for locating fluid
regions. The method involves two steps for each interface reconstruction—determining the
gradient of the interface within each cell, and positioning the interface within each cell to
equate the calculated cell VOF volume to the volume contained between the free surface
and cell boundaries.
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FIG. 1. Example in cell velocity fields, represented by fluid streamlines. In each case, streamlines having
stream functions equally spaced in the range−1≤9 ≤ 1 are shown.

2.3.1. Free Surface Gradient Calculation

In this study we have used two alternative methods for calculating the free surface gra-
dient. The first method, of Youngs [20], is taken from the RIPPLE code of Kotheet al.
[7]. It is referred to as the Youngs method. The second method used in this study is
an error minimization method. The error minimization concept and the specific method
used here are both from Puckett [14]. This second method is referred to as the Puckett
method.

The implementation of the two interface gradient calculation methods is now presented.
A comparative analysis of the accuracy of the methods is included in Section 3.

The Youngs method.Under the Youngs method, interface normals are first calculated
at each of the four vertices of each cell as the gradient of the VOF function,

n =∇F. (9)
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FIG. 2. VOF normal locations used by the Youngs method of interface gradient calculation [7]. The shaded
area is the actual fluid location.

Following [7], and referring to Fig. 2 for notation, Eq. (9) is differenced using

ni+1/2, j+1/2 =
{
(Fi+1, j+1− Fi, j+1)δyj + (Fi+1, j − Fi, j )δyj+1

(δyj + δyj+1)δxi+1/2

}
i

+
{
(Fi+1, j+1− Fi+1, j )δxi + (Fi, j+1− Fi, j )δxi+1

(δxi + δxi+1)δyj+1/2

}
j . (10)

Cell-centered normals are calculated by averaging these vertex normals, so that the centered
normals are effectively calculated using VOF data from a 3× 3 mesh,

ni, j = 1

4

(
ni+1/2, j+1/2+ ni+1/2, j−1/2+ ni−1/2, j−1/2+ ni−1/2, j+1/2

)
. (11)

The orientation of the fluid interface is set perpendicular to this cell-centered normal.

The Puckett method.Under the Puckett method, each interface orientation within each
cell has associated with it an error function. When this error function is minimized, we find
the optimal free surface orientation. The error function for the Puckett method is defined as
follows;

1. Given a gradient, the interface is reconstructed such that the volume of fluid contained
between the interface and cell boundaries is equal to the volume of fluid within the examined
cell. The method used here follows that described in Section 2.3.2.

2. The fluid interface is continued beyond the boundaries of the examined cell so that it
traverses a total of 3× 3= 9 cells, with the examined cell at the center.

3. Volume of fluid functions,F∗, are calculated for each of the surrounding 8 cells based
on the extended reconstructed interface.

4. Finally, the error associated with the reconstructed interface is calculated. The error
function is defined as

Ei, j =
∑

n=i−1,i+1
m= j−1, j+1

(Fn,m − F∗n,m)
2, (12)



THE STREAM SCHEME 7

whereFn,m is the actual VOF function for celln,m, andF∗n,m is the VOF function for cell
n,m based on the extended reconstructed interface, as described above.

Under the Stream scheme, the Puckett method is implemented for each examined cell
using a three-step process. First, an estimation of the interface gradient is calculated using the
Youngs method. The interface is then rotated from this first approximation, using discrete,
variably sized steps, until the local minimum of the gradient error function,Ei, j , is bounded.
A standard Golden Section search routine, taken from Presset al. [13], is then used to
determine the final, minimum error, interface gradient. The tolerance used in this work for
determining the minimum error orientation was 1× 10−6 rad.

Experimentation with the error minimization technique showed that finding a minimum
to the error function in the locality of the Youngs orientation estimate, rather than attempting
to find an absolute minimum to the error function over all possible interface orientations,
tended to produce greater free surface reconstruction accuracy.

2.3.2. Free Surface Interface Positioning

Once the interface gradient has been determined, positioning of the interface within each
cell is accomplished by equating the volume of fluid contained under the interface to the
volume of fluid contained within the cell. Under the Stream scheme each interface location
is described by two points—a left point and a right point. Both points lie on a cell boundary
and both points lie on the interface line. The relationship between the points determines the
position of the fluid within the cell—when looking along the interface line from the left
point toward the right point, fluid is located to the left of the interface.

Interface positioning is accomplished in the code using first a series of logic steps to
determine which boundaries of each given cell the interface intersects with, followed by
a number of analytical expressions which equate the area under the interface to the area
contained within the cell. For example, in the cell shown in Fig. 3, fluid is located to the
left of the interface line, and the left and right interface points would be calculated using

xleft = xi−1+ Fi, j δx + 1

2
δy

ny

nx
, (13)

yleft = yj−1, (14)

FIG. 3. Example cell showing location of left and right points.
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xright = xi−1+ Fi, j δx − 1

2
δy

ny

nx
, (15)

and

yright = yj . (16)

The method used to calculate cell boundary fluxes is now examined.

2.4. The Fluid Boundary Flux Calculation

Ideally, we would like to integrate Eq. (2) exactly with respect to time to determine
donating regions associated with each boundary and then determine the intersection between
these regions and the fluid regions to calculate fluid boundary fluxes. In practice however,
such a procedure would be extremely computationally complex for two main reasons;

1. A fluid particle that flows through a particular boundary during a discrete time step
and exists on a particular streamline may pass through many cells en route to that boundary.
It is the starting positions of such particles that define a donating region for a given cell
boundary. The difficulty is that integrating along the path of a fluid particle, or streamline,
becomes more and more complex the more cells the particle passes through, as each cell has
a different velocity field. As a result, defining donating regions for boundaries which are
fluxing fluid from many cells becomes impractically complex. Determining the intersection
between these irregular donating regions and the reconstructed fluid regions would add
further complications.

2. As previously discussed, the velocity field defined by Eq. (2) is continuous throughout
the computational domain, except at cell vertices. Thus, trying to integrate away from vertex
points to define the fluid donating regions may not be computationally possible.

It is for these reasons that an approximate method of integration has been developed to
determine fluid boundary fluxes.

2.4.1. Approximate Integration Method

The idea behind this approximate integration method is simple. Each boundary flux is
split into a discrete number of streamtubes, each “tube” representing an equal flux of total
fluid and void volume. Fluid streamlines, determined using Eq. (7), define the upper and
lower boundaries of each tube. The length of each tube is determined by the length of the
computational time step. The number of tubes that each boundary is split into,nstream, is
determined by the user—the more tubes the greater the accuracy of the integration technique.

To illustrate this point, Fig. 4 shows an example where the velocity at the right boundary
of cell i, j is positive, and fluid is fluxing through this boundary from cellsi, j andi, j + 1
during the solution time step. This right boundary of celli, j is referred to as the “final”
boundary, as it is the last boundary a fluid particle would pass through before entering cell
i + 1, j .

The volume of fluid in each streamtube which is fluxed through a particular final boundary
during a time stepδt is approximately

Vfluid in tube≈
∫ L

0
w(l ) f (l ) dl, (17)
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FIG. 4. Example tube used to calculate the fluid flux over the right boundary of celli, j .

where a cell of unit depth has been assumed. In Eq. (17)f (l ) is the VOF function evaluated
along the central characteristic streamline of the tube,w is the nonconstant width of the
tube measured normal to the central tube streamline,l is a streamwise coordinate along the
length of the tube directed upstream from the final boundary, andL is the streamwise length
of the tube.

To determine the streamwise width of the tube, we note that the total volume of a small
section of the tube, located atl and of lengthδl , is approximately

δV = w(l ) δl . (18)

Also, we note that as no fluid may cross the upper and lower boundaries of the tube, the
volume contained within this small section is equal to the volume flowrate through the final
boundary of the tube multiplied by the time taken for a fluid particle to pass over the small
section of the tube. Thus,

δV = ui, j × δyj

nstream
[t (l )− t (l + δl )], (19)

wheret represents the time taken for a fluid particle to flow from the beginning of the tube
to positionl . Combining Eqs. (18) and (19), rearranging, and taking the limit asδl→ 0
yields for the width of the tube,

w(l ) = −ui, j × δyj

nstream
lim
δl→0

1

δl
[t (l + δl )− t (l )] = −ui, j × δyj

nstream

dt

dl
. (20)

Substituting Eq. (20) into Eq. (17) gives

Vfluid in tube= −ui, j δyj

nstream

∫ L

0
f (l )

dt

dl
dl = ui, j δyj

nstream

∫ δt

0
f (t) dt, (21)

or

Vfluid in tube= ui, j δyj

nstream
ttotal fluid, (22)
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wherettotal fluid is defined as the total time a fluid particle would spend in fluid regions, when
moving for timeδt along the central tube streamline toward the final cell boundary over a
stationary fluid geometry.

Once individual tube fluid fluxes have been determined, VOF values are incremented
using

FA = FA + Vfluid in tube

(δx× δy)A
(23)

and

FD = FD − Vfluid in tube

(δx× δy)D
(24)

for all streamtubes along each boundary. In Eqs. (23) and (24) the subscriptA identifies the
accepting cell, which is defined as the cell immediately downstream of the final boundary,
while the subscriptD identifies the donating cell, which is the cell immediately upstream
of the final boundary. Note that although fluid volumes may be calculated using fluid
geometries and velocity fields from other cells, the calculated flux refers to the amount of
fluid passing through each examined cell boundary during each time step. Thus, during
a boundary flux calculation only the VOF values for the accepting and donating cells are
changed.

2.4.2. Fluid Particle Trajectory Calculation

In calculatingttotal fluid for each tube, we recognize that a streamtube may pass through
more than one cell en route to the final cell boundary. To simplify computational calculations,
we divide the total tube length into sections contained within individual computational cells.
Thus, we can specify

ttotal fluid =
∑

all cells along central
tube streamline

tfluid, (25)

wheretfluid is the time a fluid particle would spend in the fluid region of an individual cell,
when moving along the central tube streamline over a stationary fluid geometry. We also
definetremainas the length of time elapsed when a fluid particle travels between the start of
a central tube streamline and a particular cell. For example, at the final boundary of a tube,
tremain= δt .

Using these definitions, the integration problem now becomes one of travelling backward
along each central tube streamline, from each examined final boundary, calculatingtfluid for
each cell passed through en route. When we reach the start of the streamtube,tremain→ 0,
indicating that the tube integration is complete.

Details of the numerical procedure used to implement these calculations can be found in
[5]. The procedure itself is straightforward; however, it relies on a few mathematical utilities
concerning the velocity field and interface positioning which we will now examine. In the
following, 9c is defined as the characteristic stream value for the central tube streamline
being calculated. It is evaluated using the stream equation (7) at the center of the streamtube
under examination.
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Length of tube remaining.It is necessary to calculate the starting point for a tube, in
order to ascertain whether the tube finishes within a particular cell or not. For the example
shown in Fig. 4, where fluid is flowing in the positive direction over the right vertical
boundary of celli, j , the startingx coordinate of the tube,xend, is given by

xend=
xi+ 1

2
− χytremain if χb = 0

1
χb

[(
χbxi+ 1

2
+ χy

)
exp(−χbtremain)− χy

]
if χb 6= 0

. (26)

Intersection between cell boundaries and central tube streamline.We also need to know
whether a streamtube continues beyond the boundaries of an individual cell. Again using the
example of Fig. 4, thex coordinate marking the intersection between the central streamline
and the upper boundary of celli, j is given by

xtop =
9c − χx yj+ 1

2

χbyj+ 1
2
+ χx

(27)

if χbyj+ 1
2
+χx 6= 0, otherwise the intersection point is not defined.

Intersection between a fluid interface and central tube streamline.We need to determine
the intersection points between the free surface interfaces and central tube streamlines in
each cell that the streamtube traverses. Free surface interface lines are defined using the left
and right point method, as discussed in Section 2.3.2. In calculating the streamline and free
surface intersection points, we cast the interface curves into a different form, namely

λxx + λyy = λc. (28)

The constants appearing in Eq. (28) are evaluated in each cell using

λx = yleft − yright√
(xleft − xright)2+ (yleft − yright)2

, (29)

λy = xright− xleft√
(xleft − xright)2+ (yleft − yright)2

(30)

and

λc = λxxright+ λyyright. (31)

Finding the fluid interface and central streamline intersection points now becomes a
question of solving the stream equation (7) and interface equation (28) simultaneously. The
form of the solution to this problem depends on the form of the two curves. The different
alternatives are listed below for the case of flux through a vertical cell boundary:

1. Horizontal interface,λx = 0. If χbλc + χxλy 6= 0 then

xintersection= 9cλy − χxλc

χbλc + χxλy
, (32)

otherwise no intersection takes place.
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2. Vertical interface,λy= 0.

xintersection= λc

λx
. (33)

3. Streamline is a straight line,χb= 0. If λxχy− λyχx 6= 0 then

xintersection= −9cλy − χyλc

λxχy − λyχx
, (34)

otherwise no intersection takes place.
4. Streamline has curvature and interface finite nonzero gradient. Define

b = χyλx − χxλy − χbλc

χbλx
(35)

and

c = 9cλy − χyλc

χbλx
. (36)

If the determinate of the solution to these equations, det=√b2− 4c, is real, then at least
one intersection point occurs. If det= 0, then only one intersection point occurs, namely

xintersection= −b

2
. (37)

If the determinate is real and nonzero, then two intersection points occur, namely

xintersection= −b+√det

2
and xintersection= −b−√det

2
. (38)

Similar solutions are used for intersections occurring in cells with horizontal flux bound-
aries.

Determining whether a region is void or fluid.The integration algorithm requires knowl-
edge of which regions along the central tube streamline are fluid or void. The method used
here is taken from Rideret al. [16]. Defining a function

H = (yleft − yright)(x − xleft)+ (xright− xleft)(y− yleft), (39)

the point(x, y) is located within a fluid region ifH > 0.

Time taken to traverse fluid region.Once the fluid region has been defined in terms of
intersection points on the characteristic tube streamline,tfluid can be calculated. For example,
say pointsx1 andx2 define the extremes of the fluid region within a particular streamline
in a particular cell. The length of time a fluid particle takes to cross this region is given by

tfluid =
∣∣∣∣∫ x1

x2

1

u(x, y)
dx

∣∣∣∣ =

∣∣∣ 1
χy
(x1− x2)

∣∣∣ if χb = 0∣∣∣ 1
χb

ln
[
χbx2+χy

χbx1+χy

]∣∣∣ if χb 6= 0
, (40)

where we have assumed the particle exits the cell through a vertical boundary.



THE STREAM SCHEME 13

2.5. Algorithm Accuracy

2.5.1. Fluid Volume Conservation

The accuracy of the Stream VOF advection algorithm in conserving volume is dependent
on the accuracy of the integration algorithm used to calculate boundary fluid fluxes. As
previously mentioned, the accuracy of the integration algorithm is dependent on the user
specified variable,nstream, the number of streamtubes used in calculating each boundary
flux. The greater the number of tubes, the greater the accuracy.

Figure 5 shows an example of a “worst-case scenario” for integration accuracy. Here
we see that fluid velocity streamlines are aligned with the free surface orientation, and the
magnitude of error that we could expect from a single boundary flux calculation could be
as high as

Error(F) = O

(
uδt

2nstreamδx

)
= O

(
C

2nstream

)
, (41)

where the notationO(z) specifies “of the orderz,” andC= uδt/δx is the Courant number.
As detailed by Eqs. (23) and (24), after each boundary fluid flux is calculated, fluid is

added to the accepting cell, and the same amount of fluid is subtracted from the donating
cell. As a result, fluid volume is rigorously conserved after the advection step. The difficulty
is that integration inaccuracies can cause undershoot and overshootF values, which when
brought back into the zero to one range, can cause net changes in fluid volume.

The solution is to correctF value overshoots and undershoots using a local redistribution
algorithm, after all boundary fluxes have been incremented, but before the 0≤ F ≤ 1 check.
The specific redistribution algorithm can be summarized by the schematic of Fig. 6.

2.5.2. Fluid and Void Wisp Generation

Integration inaccuracies can also cause “wisp” generation of either fluid in void regions, or
alternatively void in fluid regions. Wisps are generated when a free surface interface moves
across the computational domain. If, for example, a fluid interface is sweeping across a void
region, integration inaccuracies at the interface cause small amounts of void to remain in

FIG. 5. A worst-case scenario for border fluid flux calculation. The fluid free surface is orientated parallel to
the integration tubes, and located close to a characteristic streamline.
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FIG. 6. Schematic showing the algorithm used to locally redistribute nonrealF values.

the cells after the interface has passed, thus creating wisps of void within the fluid region.
Similarly, wisps of fluid in void regions can be created when a void interface sweeps over
an area of fluid.

Other terms previously used for VOF debris include “flotsam” and “jetsam.” “Wisps”
was chosen in this study, as it was felt that the term most accurately describes the low total
fluid volume nature of the fluid or void trails produced under the Stream algorithm.

Obviously the level of wisp generation depends on the accuracy of the integration scheme,
and thus the magnitude of the user set variablenstream. In general, the amount of fluid or void
involved in wisps is small, even for small values ofnstream, but their presence is detrimental
to computational efficiency, as they require the discretized Navier–Stokes equations to be
solved in cells that should not contain fluid.

Under the Stream scheme, wisps are eradicated using an algorithm similar to the under-
shoot and overshoot algorithm detailed above. For the case of a fluid wisp in a void region,
a cell is considered to contain a wisp if the cell, and all of its eight neighbors, contains
less than a certain proportion of fluid. This critical proportion is specified by the user set
variable,Fwisp.

Once a fluid wisp is established, fluid is moved from the wisp cell to a neighboring cell
which is estimated to be closer to the free surface interface. Exactly which cell is closer to the
free surface interface is specified by the direction of the free surface interface normal in the
wisp cell. In this case, the free surface interface normal is defined as the maximum gradient
of the VOF function, calculated using the methods outlined in Section 2.3.1, in a 3× 3
array of cells surrounding the examined wisp cell. The VOF gradient within a wisp cell is
determined in this fashion so that even if a wisp cell is separated from the interface region by
two cell dimensions, fluid is still moved in the direction of the actual free surface boundary.

For the case of a void wisp in a fluid region, a cell is considered to contain a wisp if the
cell and all eight neighbors have VOF values greater than 1− Fwisp. As for the fluid wisp
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case, once a void wisp is established, fluid is moved from cells closer to the free-surface
interface to the examined cell, thus removing the void in fluid wisp.

By destroying a wisp once it is generated, rather than using various criteria to limit fluid
boundary fluxes, the Stream method wisp eradication technique has negligible effect on
fluid geometry and is capable of removing both wisps of fluid in void as well as wisps of
void in fluid.

While the wisp eradication algorithm is successful in removing wisps from computations,
its use unfortunately imposes a maximum time step on fluid dynamics computations. In its
present form the wisp eradication algorithm can move the contents of a wisp cell one cell
dimension closer to the actual free surface interface per time step. It follows that if the actual
fluid interface is traveling a greater distance than one-cell dimension per time step, the wisp
eradication algorithm is not capable of reuniting wisps with the main fluid bodies and will
consequently fail. For this reason the maximum time step which the Stream scheme can
operate under without producing fluid wisps corresponds to a Courant number of unity.

Note that if the cell boundary flux integration technique were exact, or alternatively if the
wisp eradication algorithm could move wisps with a velocity comparable with actual fluid
velocities, this time step limitation would not apply. In practice however most computational
codes are limited by other stability criteria to a Courant number of less than or equal to
unity, so development of a more complex wisp eradication algorithm is not justified.

Equation (41) gives the maximum expected error per boundary flux calculation. In cal-
culating a suitable level forFwisp, we note that each cell could be involved in up to four
boundary flux calculations per time step, corresponding to four cell boundaries. Thus, a
suitable level for the critical wisp VOF value may be

Fwisp = 2C

nstream
, (42)

whereC is the maximum Courant number within the domain. In practice the level specified
by Eq. (42) is overly conservative. In the advection test cases calculated in the following
sections,Fwisp was set to half the value given above and still was successful in removing
all fluid wisps.

3. PERFORMANCE OF THE STREAM SCHEME

In this section the performance of the Stream algorithm is compared against other VOF
advection algorithms using a variety of advection tests.

3.1. Rudman Translation Tests

Translation tests provide the most basic measure of VOF advection algorithm perfor-
mance. To facilitate comparison of the Stream algorithm against other algorithms, the form
of the test used here is taken from Rudman [17].

For this test a computational domain of dimensions 4× 4 m2 is composed of 200× 200
uniformly sized square cells. Two separate uniform and constant velocity fields, having
the components (1, 0) and (2, 1), are used to advect the different fluid forms. Three fluid
forms are advected—a hollow square orientated with sides parallel to the coordinate axis, a
hollow square orientated at 26.57◦ to the axis, and a hollow circle. The major dimension of
each form is 0.8 m. A Courant number of 0.25 is used in all computations, and each test is
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FIG. 7. Advection with unidirectional velocity fields (1, 0) (top) and (2, 1) (bottom). At the left are the initial
conditions (I.C.) followed by the results for SLIC, Hirt–Nichols’ VOF, FCT–VOF, and Youngs’ method. (Figure
and caption are reproduced with permission from Rudman [17].)

performed over approximately 500 time steps. Further details of the form of the tests may
be found in Rudman [17].

Figure 7, taken from Rudman [17], shows the initial position and final position fluid forms
for the above translation tests calculated using a number of VOF advection algorithms.
Figure 8 shows the final position fluid forms for the same tests as calculated by the Stream
algorithm. In both figures each plot was generated using three VOF contour intervals, 0.025,
0.5, and 0.975, and for compactness the three different fluid forms tested are displayed on
the same computational domain. Quantitative errors for each test are shown in Table I. As
in [17], these errors were calculated using

E =
∑

i, j

∣∣Fn
i, j − Fe

i, j

∣∣∑
i, j F0

i, j

, (43)

where Fn
i, j is the calculated VOF function at the end of the test,Fe

i, j is the exact VOF
function at the end of the test, andF0

i, j is the initial VOF function. The Stream algorithm
calculations were performed usingnstream= 1000 andFwisp= 2.5× 10−4.

A detailed comparison of the performance of the algorithms shown in Fig. 7 is given
in Rudman [17]. In general the SLIC algorithm, which uses piecewise constant interface
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FIG. 8. The straight translation tests of Rudman [17] repeated using the Stream algorithm. Cases (a) and (b)
show results for the (1, 0) velocity field, cases (c) and (d) show results for the (2, 1) field. Cases (a) and (c) were
calculated using the Youngs method of gradient calculation, cases (b) and (d) using the Puckett method of gradient
calculation.

reconstructions, produces good translation results when the velocity field is aligned with
the coordinate axis, but poor results otherwise. The Hirt–Nichols algorithm, implemented
using a dimensionally split flux calculation, produces relatively poor results in all tests.
As noted in Rudman [17], it is surprising that the Hirt–Nichols results are no better than
the SLIC results, given that the Hirt–Nichols algorithm is the more complex of the two
linear constant reconstruction algorithms. The FCT–VOF algorithm produces results that
are generally superior to the results generated by the linear constant algorithms, but results
that are generally inferior to the piecewise linear Youngs algorithm.

The Stream algorithm implemented with the Youngs interface gradient calculation pro-
duces a similar level of accuracy to the original Youngs advection algorithm. Note that while

TABLE I

Translation Test Error Results

Advection algorithm Square (0◦) Square (26◦) Circle

Velocity field (1, 0)
SLIC 8.42× 10−8 1.46× 10−2 1.30× 10−2

Hirt–Nichols 1.03× 10−8 6.91× 10−2 4.55× 10−2

FCT–VOF 3.89× 10−8 2.32× 10−2 1.28× 10−2

Youngs 1.08× 10−3 5.35× 10−3 3.08× 10−3

Stream/Youngs 1.09× 10−3 5.86× 10−3 3.03× 10−3

Stream/Puckett 1.61× 10−3 4.57× 10−3 1.42× 10−3

Velocity field (2, 1)
SLIC 1.32× 10−1 1.08× 10−1 9.18× 10−2

Hirt–Nichols 6.86× 10−3 1.60× 10−1 1.90× 10−1

FCT–VOF 1.63× 10−8 8.15× 10−2 3.99× 10−2

Youngs 2.58× 10−2 3.16× 10−2 2.98× 10−2

Stream/Youngs 2.70× 10−2 3.08× 10−2 2.66× 10−2

Stream/Puckett 3.33× 10−2 3.15× 10−2 6.96× 10−3

Note.All results expect those calculated using the Stream algorithm are
taken from Rudman [17]. Stream algorithm results were calculated using
both the Youngs and Puckett methods of free surface gradient calculation.
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both methods use the same interface reconstruction technique, the Youngs algorithm uses a
dimensionally split flux calculation technique, while the Stream algorithm uses a multidi-
mensional flux technique. It is not surprising that both results calculated using the Youngs
method of interface reconstruction are similar, as the increased accuracy afforded by the
Stream flux calculation method is only realized when velocity field streamlines are curved.

For the square fluid form translation tests, the Stream algorithm coupled to the Puckett
gradient calculation method produces errors that are similar in magnitude to the errors
produced using the Youngs gradient calculation method, while for the circular fluid form
tests, the Stream algorithm coupled to the Puckett gradient calculation method produces
errors which are superior those produced using the Youngs gradient calculation method.

As the curvature at the corners of a square is infinite, the errors generated during a square
fluid form translation test will always be limited by the resolution of the computational mesh
when a linear piecewise advection algorithm is used. However, this is not the necessarily the
case when using a linear constant advection algorithm. Indeed, as shown in Table I, under
some specific circumstances the reduced resolution of the linear constant methods is able to
predict the translation of the square forms to the precision of the floating point arithmetic.

Fluid forms such as the square are not physically realistic fluid forms, however, as surfaces
with infinite curvatures do not occur in real fluid flow situations. Therefore, any difficulties
experienced by piecewise linear methods in representing such surfaces do not occur in
practice, and it is for this reason that the Stream algorithm, coupled to the Puckett method of
interface gradient calculation, is judged to be the most accurate algorithm in these translation
tests.

3.2. Rudman–Zalesak Slotted Disk Rotation Test

The Zalesak slotted disk test has become a benchmark test for comparison of scalar
advection algorithms. Originally devised by Zalesak [21], the form of the test used here is
taken from Rudman [17]. The test involves rotating a slotted disk through one complete
revolution within the computational domain under the action of a uniform vorticity veloc-
ity field. Advection algorithm accuracy can be gauged by comparing the initial and final
positions of the disk.

The Zalesak test performed here uses the same computational domain as was used for
the translation tests above. The disk has a diameter of 1 m, and one revolution of the disk is
completed in exactly 2524 time steps. This time step corresponds to a Courant number, based
on the maximum coordinate velocity existing within the domain, of approximately 0.25.
Further details of the form of the test can be found in Rudman [17]. The Stream algorithm
tests were performed withnstream= 1000 and a correspondingFwisp= 2.5× 10−4.

Figure 9, reproduced from Rudman [17], shows disks calculated using several different
advection algorithms, while Fig. 10 shows the test repeated using the Stream algorithm.
Quantitative errors for the different advection schemes, again calculated using equation
(43), are shown in Table II.

As with the translation tests, a detailed comparison of the performance of the four schemes
evaluated in Fig. 9 is given in Rudman [17]. In general the Youngs method, which uses a
piecewise linear interface reconstruction technique, produces results which are significantly
more accurate than the results produced by the linear constant methods. Again the FCT–
VOF method appears more accurate than either linear constant method, but less accurate
than the Youngs method.
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TABLE II

Slotted Disk Rotation Test Results

Advection algorithm Error

SLIC 8.38× 10−2

Hirt–Nichols 9.62× 10−2

FCT–VOF 3.29× 10−2

Youngs 1.09× 10−2

Stream/Youngs 1.07× 10−2

Stream/Puckett 1.00× 10−2

Note.All results except those calculated using
the Stream algorithm are taken from Rudman
[17]. Stream algorithm results were calculated
using both the Youngs and Puckett methods of
free surface gradient calculation.

FIG. 9. Zalesak’s test problem for solid body rotation:F contours for initial conditions (I.C.) and results after
one revolution for each of the four schemes. (Figure and caption are reproduced with permission from Rudman
[17].)

FIG. 10. The Zalesak slotted disk test from Rudman [17] repeated using the Stream algorithm. Results
calculated using both the Youngs and Puckett methods of interface gradient calculation are shown.
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Comparing the results of Fig. 9 with those of Fig. 10, the accuracy of the Stream and
Youngs algorithms appears similar. Examining the errors shown in Table II, however, it
appears that the Stream advection method coupled to the Youngs interface reconstruction
method is slightly more accurate than the Youngs method, indicating that the Stream bound-
ary flux calculation technique is marginally more accurate than the Youngs dimensionally
split flux calculation technique in this instance. The Stream scheme operating with the
Puckett method of interface reconstruction produces the most accurate results in this test.

The Zalesak rotation test results presented here are informative, but should be interpreted
with care. An analysis of the errors calculated in Table II has shown that for the advection
algorithms tested, the primary region of error generation in each test was at the sharp
corners which define the slot in the disk. Thus, the Zalesak test results presented are largely
a measure of the employed interface reconstruction technique to represent fluid interfaces
having high curvatures, rather than a measure of the accuracy of the different VOF flux
calculation techniques. It is for this reason that there are only minor differences in the errors
generated by the different piecewise linear algorithms.

3.3. Rider–Kothe Reversed Single Vortex Test

A more thorough test of VOF advection is made when the velocity field contains nonuni-
form vorticity, causing the fluid to deform and shear as it translated throughout the com-
putational domain. Such a test, taken from the work of Rider and Kothe [16], is performed
here.

In the reversed single vortex test, a cylinder of fluid, of radius 0.15 m and centered at
(0.5, 0.75), is deformed in a velocity field specified by the Stream function

9 = 1

π
sin2(πx) sin2(πy) cos

(
π t

T

)
. (44)

The computational domain used in the test had the dimensions 1× 1 m2, and the duration
of each test wasT s. A Courant number of 1, based on the maximum coordinate velocity
within the computational domain, was used and the tests were performed withnstream= 100
andFwisp= 0.01.

Equation (44) specifies a vortex which shears the cylinder of fluid into a spiral type
form. The temporal component of Eq. (44) is responsible for reversing the vortex. At time
t = T/2 s, the deformation of the cylinder should be at a maximum, while at the end of the
test, the fluid should return to the initial position. Thus, like the Zalesak test, an indication
of the accuracy of the advection algorithm can be gauged by comparing the initial and final
positions of the fluid form. Further details of the form of the test can be found in Rider and
Kothe [16].

Figure 11 shows the reversed vortex test computed using the Stream scheme coupled to
the Youngs gradient calculation method, calculated using a variety of mesh sizes and three
different test durations. Figure 12 shows the same tests computed using the Stream scheme
coupled to the Puckett gradient calculation method. In both figures the VOF function is not
represented by contour lines, but rather as individual blocks of fluid with each cell interface
represented using the techniques outlined in Section 2.3. This method of representation is
consistent with the results presented in Rider and Kothe [16] and allows comparison of the
accuracy of the alternative interface reconstruction techniques.



THE STREAM SCHEME 21

FIG. 11. The reversed single vortex test performed using the Stream scheme coupled to the Youngs method
of interface gradient calculation. Cases (a–d) are performed on a 322 mesh, and cases (e) and (f ) are performed on
a 1282 mesh. Case (a) usesT = 0.5, case (b)T = 2.0, and cases (c–f )T = 8.0. Cases (c) and (e) show the cylinder
at t = T/2, while the remainder show the cylinder att = T . All times are measured in seconds.

Figures 11 and 12 show qualitatively similar results. Case (a) in both figures shows the
final fluid form after aT = 0.5 s test performed on a coarse 322 mesh. In both figures the
fluid has returned to the starting position with reasonable accuracy. Case (b) in both figures
shows the test repeated, but over a longer duration ofT = 2.0 s. The final fluid position is
now less accurate, a result of the greater amount of deformation the fluid is subjected to
during the test.

Cases (c) and (d) in Figs. 11 and 12 show the coarse mesh computations repeated using
T = 8.0 s. The final fluid form in both figures, shown by case (d), is significantly in error.
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FIG. 12. The reversed single vortex test performed using the Stream scheme coupled to the Puckett method
of interface gradient calculation. Cases (a–d) are performed on a 322 mesh, and cases (e) and (f ) are performed on
a 1282 mesh. Case (a) usesT = 0.5, case (b)T = 2.0, and cases (c–f)T = 8.0. Cases (c) and (e) show the cylinder
at t = T/2, while the remainder show the cylinder att = T . All times are measured in seconds.

As shown by case (c), this is a result of the fluid breaking into a number of discrete “globs”
at the time of maximum deformation,t = T/2 s.

Breakup of the spiral occurs because the width of the fluid form becomes less than the
computational cell dimension. In these cases, the interface reconstruction technique tends
to arrange the small amounts of fluid in each cell as close together as possible, causing the
fluid to glob. This process can be thought of as numerical surface tension. As shown, its
effect is only evident when the dimensions of the fluid region are similar to or smaller than
the dimensions of the computational cells. In real fluid simulations, where the fluid form
should have dimensions larger than the dimensions of the cells, its effect is negligible.
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Cases (e) and (f) in Figs. 11 and 12 show the long duration test repeated using a finer
1282 mesh size. As indicated in case (e), the spiral is now more accurately represented
at t = T/2 s, which results in a more accurate fluid reconstruction at the end of the test.
Inaccuracies present at the top of the circle in case (f) are caused by the minor breakup
of the spiral at its thinnest end in case (e), while inaccuracies present at the bottom of the
circle in case (f) are caused by inaccuracies in the reconstruction of the thicker end of the
spiral throughout the duration of the test.

Comparing Figs. 11 and 12, it appears that the Puckett method of free surface recon-
struction results in a higher accuracy advection calculation than the Youngs method. This
is particularly evident in the long duration tests, where the degree of fluid breakup at the
time of maximum deformation is significantly less when using the Puckett method rather
than the Youngs method.

In some cases small amounts of fluid appears in cells which are separated from the free
surface interface by approximately one cell dimension or less. These amounts are due to
the approximate boundary flux integration technique employed by the Stream scheme and
are not redistributed by the wisp eradication algorithm as they are in the close vicinity of
an interface. There were no wisps generated in any of the tests which did not remain in the
close vicinity of an interface.

Table III shows quantitative errors calculated during the reversed vortex tests. To maintain
consistency with Rider and Kothe [16], errors are calculated here using

E =
∑
i, j

δxi δyj

∣∣Fn
i, j − Fe

i, j

∣∣ , (45)

TABLE III

Geometrical Advection Test Errors and Convergence Rates

T = 0.5 T = 2.0 T = 8.0

Grid Error Order Error Order Error Order

Rider–Kothe/Puckett
322 7.29× 10−4 2.36× 10−3 4.78× 10−2

2.36 2.01 2.78
642 1.42× 10−4 5.85× 10−4 6.96× 10−3

1.86 2.16 2.27
1282 3.90× 10−5 1.31× 10−4 1.44× 10−3

Stream/Puckett
322 5.51× 10−4 2.37× 10−3 3.72× 10−2

2.32 2.07 2.45
642 1.10× 10−4 5.65× 10−4 6.79× 10−3

1.71 2.10 2.53
1282 3.38× 10−5 1.32× 10−4 1.18× 10−3

Stream/Youngs
322 3.42× 10−4 2.49× 10−3 3.61× 10−2

0.99 1.82 1.85
642 1.72× 10−4 7.06× 10−4 1.00× 10−2

0.84 1.66 2.22
1282 9.60× 10−5 2.23× 10−4 2.16× 10−3

Note.Results shown for the Rider–Kothe scheme are taken from Rider and Kothe [16].
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where as previouslyFn
i, j is the calculated VOF function at the end of the test, andFe

i, j is
the exact VOF function at the end of the test. This error has the units of m2.

Comparing the Stream algorithm errors computed using the two alternative interface
reconstruction methods, the Youngs method appears generally less accurate than the Puckett
method, except during the coarsest grid tests. This result supports the observations made
in Rider and Kothe [16], where it was found that the Youngs method provides a higher
level of reconstruction accuracy than error minimization methods when the curvature of the
fluid feature has dimensions which are of magnitude similar to the cell dimensions. For the
majority of the tests, however, the Puckett method results in errors which are significantly
smaller than errors calculated using the Youngs method.

Comparing the errors calculated using the Stream scheme coupled to the Puckett inter-
face gradient method, and the Rider–Kothe scheme coupled to the same interface gradient
method, the Stream scheme appears to be more accurate. In all but two of the nine tests, the
errors calculated by the Stream algorithm are significantly smaller than those calculated by
the other multidimensional advection algorithm.

The order values shown in Table III are calculated as the convergence rates of the advection
test errors as the grid size is refined. As a constant Courant number is used in all tests, as
the mesh is refined, the time step used in the tests is also decreased. Consequently, the
convergence rates shown in the table are an indication of the combined spatial and temporal
accuracy of the algorithms, as will be discussed further in Section 4.3. In general the
schemes employing the Puckett reconstruction technique are of second order accuracy,
while the scheme employing the Youngs method is of a slightly lower accuracy.

In the next section, an analysis of the origin of errors generated during the different
advection tests performed using the Stream algorithm is given.

4. ALGORITHM ERRORS AND ERROR CONVERGENCE RATES

Fluid volume errors calculated by the Stream algorithm during a fixed duration advection
test are composed of errors resulting from free surface interface reconstructions and errors
resulting from cell boundary flux calculations. Thus, we may represent the total volume
error found during an advection test by

E = Efree surface reconstruction+ Ecell boundary flux. (46)

The free surface reconstruction error is composed of a spatial and temporal error,

Efree surface reconstruction= A1δx
n1 f (C), (47)

whereA1 is a constant,n1 is the spatial order of the free surface reconstruction algorithm,
and f (C) is a function of the Courant number,

C = uδt

δx
. (48)

The cell boundary flux error is composed of three terms,

Ecell boundary flux= A2δx
n2 + A3δt

n3 + A4

(
u

nstream

)n4

. (49)

The first two terms on the right side of Eq. (49) represent errors resulting from the difference
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between the velocity field assumed by the Stream algorithm, and the actual velocity field
imposed in the advection test. The third term on the right side of Eq. (49) represents errors
resulting from the approximate integration method employed by the Stream algorithm.

During an advection test where the velocity field is constant in time, the temporal term
in Eq. (49) becomes zero. Also, if the actual velocity field assumed in the advection test
can be represented exactly by the velocity field assumed by the Stream algorithm, the first
spatial term on the right side of Eq. (49) is also zero. A velocity field which satisfies these
two criteria is that used in straight translation tests.

In the remainder of this section, we analyze the convergence rates and behavior of the
errors given by Eqs. (47) and (49).

4.1. Approximate Cell Boundary Flux Integration Error

A detailed discussion of the convergence rate of the approximate cell boundary flux
integration error is included in this study, as among VOF advection algorithms, this error
is unique to the Stream algorithm.

An estimate of the order of convergence of the flux integration error,n4, can be found
by consideration of Eq. (41). As each cell has four individual boundaries, the total volume
error produced during a single computational time step is

Error(V) = O

(
2uδtδx

nstream

)
, (50)

whereV represents fluid volume.
Under the Stream algorithm, integration errors only occur in cells which are in the vicinity

of a free surface. Thus, given a length of free surface interfaceS, the number of cells in
the computational domain which will sustain integration errors during a single time step is
proportional toS/δx. Also, over an advection test of durationT , the number of time steps
completed is proportional toT/δt . Consequently, applying Eq. (50) over the volume and
duration of an advection test, we may expect the cell boundary flux integration error to be
proportional to

Eflux integration error∝ ST
u

nstream
. (51)

This implies that the order of convergence of the integration error,n4, is one.
To validate this theory, we perform a simple translation advection test. In this test a circle

of fluid, of radius 0.2 and initially located at coordinates (0.25, 0.25), is translated with equal
velocity components (1, 1) for 0.5 s throughout a computational domain having dimensions
1× 1 m2. Under an exact advection method, the fluid should remain in the form of a circle
and be centered at (0.75, 0.75) on completion of the test. A Courant number of unity is
used, and Eq. (45) is used to quantify the advection test error.

As the streamlines assumed in this simple translation test are straight and constant in
time, the first two error terms in Eq. (49) can be neglected. Also, as the Courant numbers in
both dimensions are constant and equal to one throughout the domain, the fluid contained
within each cell should translate entirely to one adjacent cell during each computational
time step. As a result, free surface interface reconstructions should be identical at all times.
Thus, the error term given in Eq. (47) can be neglected, and the total advection test error
calculated is composed of only the boundary flux integration error.
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FIG. 13. Boundary flux integration errors calculated during a simple translation test. The variablenstream

ranges between 2 and 1024 and results found using four different mesh sizes are displayed.

Figure 13 shows the advection test errors calculated using four different grid sizes, and
values ofnstreamranging from 2 to 1024. For these tests the dewisping algorithm detailed
in Section 2.5.2 was deactivated, and the Puckett interface gradient calculation method was
employed. Figure 13 shows that the order of convergence of the boundary flux integration
error is approximately constant, and as suggested by the above analysis, is independent of
grid size and time step. The average order of convergence calculated over the four tests was
n4= 1.6. This is slightly higher than the order of unity suggested by equation (51), but is
of a similar magnitude.

As discussed by Rudman [17], during fluid flow computations the CPU time expended
on advecting the VOF function is generally small compared with the time spent solving the
discretized Navier–Stokes equations, so the computational efficiency of the overall code is
not critically dependent on the efficiency of the VOF advection algorithm. Indeed, the present
authors have found that a higher level of accuracy in the VOF advection process can often
allow a larger time step to be used in the calculation, thus reducing the total computational
cost of a fluid simulation. However, an analysis of the computational expense of the Stream
algorithm is included, primarily to show the effect the variablenstreamhas on computational
efficiency.

Figure 14 shows the CPU time spent on calculating the reversed single vortex test de-
scribed in Section 3.3. The test was calculated usingT = 2.0 s, and performed using the
Stream algorithm with either the Youngs or Puckett methods of interface gradient calcula-
tion. The variablenstreamwas varied between 2 and 1024.

The results of Fig. 14 show that the computational expense of a fluid simulation increases
asnstreamincreases and as the number of computational cells increases. The Puckett method
of gradient calculation is more expensive than the Youngs method, as the Puckett method is
iterative, requiring a total of nine cell interface reconstructions in each cell for each interface
orientation iteration.

It was found that the computational expense of the Stream scheme is comparable with
other multidimensional schemes when the variablenstreamis less than 10. Increasingnstream
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FIG. 14. CPU time used when performing the reversed single vortex test withT = 2.0 s.

to 100 results in an approximately order of magnitude increase in the expense of the scheme,
but at these levels the use of the scheme is still viable. As shown in Fig. 14, a value of 1000 for
nstreamincreases the computational expense by approximately a further order of magnitude.
As demonstrated by the results of Fig. 13, such a high level ofnstreamis unjustified in real
fluid simulations—the additional computational time would be better spent on a finer mesh
computation.

4.2. Free Surface Reconstruction Errors

As indicated by Eq. (47), the free surface reconstruction error is composed of a spatial
and temporal component. We will consider first the spatial component, followed by the
temporal component.

To determine the order of convergence of the spatial component, the simple circle trans-
lation test detailed in the previous section is repeated, but with a number of changes. As
previously, as the test involves only straight translation, the first two terms on the right side
of Eq. (49) are zero. In order to examine just the reconstruction error, a nonzero and constant
Courant number is used throughout the domain, and the variablenstreamis set to 1024. Such
a high value fornstreamensures that approximate integration errors generated during the test
are several orders of magnitude smaller than free surface reconstruction errors, and as a
result, advection test errors found during this test approximate free surface reconstruction
errors.

Figure 15 shows the free surface reconstruction errors calculated during the translation test
using both the Youngs and Puckett methods of interface gradient calculation. The advection
test errors calculated using the Puckett method converge consistently with grid refinement,
and the average convergence rate found over the three series of tests wasn1= 1.7. This
result is in agreement with the spatial surface reconstruction results presented in Rider
and Kothe [16], which conclude that the Puckett method generally produces second-order
surface reconstructions.
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FIG. 15. Free surface reconstruction errors calculated during the circle translation test using both the Youngs
and Puckett methods for interface gradient calculation. The results shown were calculated using four computational
cell sizes and three Courant numbers.

The convergence of errors calculated using the Youngs method is less consistent, with
notable increases in reconstruction error occurring during two of the tests when the compu-
tational cell size is reduced from 0.05 to 0.025 m. Experience using the Youngs method has
shown that generally the method does converge consistently with grid refinement, although
the rate of convergence is significantly lower than that found using the Puckett method of
gradient calculation. The study of Rider and Kothe [16] concluded that the Youngs method
produces generally first-order surface reconstructions.

The errors calculated using Youngs method of gradient calculation on the coarsest grids
are lower than the errors calculated using the Puckett method on the same grids. This
observation supports both of the observations made in Section 3.3 and the grid reconstruction
results presented in Rider and Kothe [16]. The Youngs method is more accurate than the
Puckett method in approximating a continuous free surface interface when the curvature of
the interface is of a similar magnitude to the computational cell size.

The dependence of the free surface reconstruction error on the Courant number is de-
scribed by f (C), as defined in Eq. (47). To determine the form of this function, we repeat
the circle translation test using the same conditions that were used to determine the spatial
reconstruction error convergence rate, however in this test the Courant number is reduced
from 1 down to 3.91× 10−3 while the mesh size remains constant.

Figure 16 shows the free surface reconstruction errors calculated during the advection
test as a function of the inverse Courant number. The test has been repeated using both the
Youngs and Puckett gradient calculation methods and using three different mesh sizes.

The results of Fig. 16 indicate the formf (C). The reconstruction error is at a minimum
when the Courant number is unity, but approaches a maximum value asymptotically as the
Courant number approaches zero. This suggests that to minimize the free surface recon-
struction error when using a piecewise linear reconstruction algorithm, the time step should
be set as high as possible. Both the Youngs and Puckett gradient calculation methods result
in similar forms for f (C).
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FIG. 16. Free surface reconstruction errors calculated as a function of the Courant number. The test has been
repeated using both the Youngs and Puckett methods of free surface gradient calculation and using three different
grid sizes.

That the free surface error approaches a maximum value asymptotically as the Courant
number is reduced is important to the viability of the method. If the error were to increase
unbounded as the time step approached zero, the method could not be relied upon when
small time steps were required, and would not be viable.

In the simplest terms the form off (C) is caused by the nature of the reconstruction
technique. Each time the free surface is reconstructed, a discrete amount of error is added
to the simulation, because the linear interfaces used in the computation can never exactly
reproduce the form of the actual free surface. The smaller the Courant number, the more time
steps are required to calculate fluid behavior over a set duration, and consequently the greater
the amount of free surface reconstruction error is introduced. The reconstruction error
remains bounded as the Courant number approaches zero because under such conditions, the
change in surface reconstruction between time steps is only slight, and so the reconstruction
error introduced at each time step is only small.

Note that in this advection test there is no free surface reconstruction error when the
Courant number is one. As was described above, this behavior is a result of the simple
translation form of the advection test. In realistic free surface flow computations, the Courant
number would not be constant and uniform throughout the computational domain, and the
reconstruction error would not vanish at a Courant number of one. However, during actual
free surface flow computations the free surface reconstruction error would still be minimized
at the maximum Courant number.

4.3. Cell Boundary Flux Errors

The final two error terms to consider are the first two terms on the right side of Eq. (49)—
the cell boundary flux errors. These two terms are not dependent on the accuracy of flux
integration specified bynstream, but as discussed above, they account for errors due to spatial
and temporal differences between the velocity field assumed by the Stream algorithm and
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the actual velocity field used in the advection test. As discussed above, during a simple
translation test, these terms vanish.

Generally, the free surface reconstruction term is of a magnitude larger than any of the
flux calculation error terms shown in Eq. (49) during an advection test. Even in the reversed
single vortex test described in Section 3.3, where the velocity field could not be represented
exactly by the Stream velocity field and the velocity field was not constant in time, the
advection test errors were dominated by free surface reconstruction errors. This is evident
in the high degree of dependence the test results had on the method of interface gradient
calculation.

Nevertheless, the results of Section 3.3 do indicate that the cell boundary flux errors
introduced by the Stream algorithm are lower than comparable errors introduced by the
multidimensional Rider–Kothe scheme. This is shown by the lower total advection test
errors generated by the Stream scheme compared to the Rider–Kothe scheme when using
the same free surface reconstruction technique. The reason for the lower boundary flux
errors generated by the Stream algorithm can be explained using Fig. 17.

Figure 17 shows example donating regions for a right cell boundary calculated using
four alternative multidimensional advection schemes. In all cases the horizontal component
of the velocity at the boundary is assumed to be directed toward the right, and the local
velocity field may contain nonuniform vorticity.

As shown by Fig. 17, it is evident that the Stream algorithm will produce the donating
region which most faithfully represents the actual donating region for a given cell boundary,

FIG. 17. Example donating regions defined using the (a) DDR, (b) Rider–Kothe, (c) Puckettet al., and
(d) Stream schemes.
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as the donating region may traverse as many computational cells as the time step allows,
and it is not limited in form to simple straight-sided geometries. This donating region
flexibility is what produces the lower values for the cell boundary flux terms under the
Stream scheme. Obviously the relative advantages of the Stream flux calculation technique
can only be realized when the velocity field is not uniform, a fact supported by the translation
advection test results of Section 3.1.

Determining the rate of convergence of the cell boundary flux terms is more difficult. The
error convergence rates calculated during the reversed single vortex tests are a combination
of all the error convergence rate terms which were given in Eqs. (47) and (49). Unfortunately,
as the errors generated during the reversed spiral tests are dominated by the free surface
reconstruction errors, it is difficult to determine the relative magnitudes of each of the
constituent convergence rates. Consequently, no conclusions as to the magnitude ofn2 or
n3 can be drawn.

Some general observations can be made from Fig. 17 about the different multidimensional
advection techniques. The Defined Donating Region (DDR) algorithm, developed by Harvie
and Fletcher [6], appears to be the least accurate of the alternative schemes. However, fluid
crossing a boundary under this method can only originate from the one donating cell adjacent
to the boundary. This property ensures that under the DDR scheme fluid volume is conserved
rigorously, and no fluid flotsam or wisps are produced. Thus, the DDR scheme is applicable
to fluid dynamics problems where stability of the free surface interface is paramount.

Donating regions defined by either the Rider–Kothe or Puckettet al. [15] schemes may
traverse one, two, or three cells. This produces a level of accuracy greater than the DDR
scheme, but it is at the expense of fluid volume conservation. As the donating regions are
defined independently for each cell boundary, when the velocity field is spatially varying,
donating regions can overlap or not include some fluid regions Rider and Kothe [16]. Conse-
quently, both the Rider–Kothe and Puckettet al.schemes require a local fluid redistribution
algorithm in order to achieve fluid conversation.

The Stream scheme also requires a local fluid redistribution algorithm, but the reason for
its inclusion is significantly different to the reason it is included in other multidimensional
schemes. The purpose for the redistribution algorithm under the Stream scheme is to correct
errors resulting from the approximate integration technique. As the user can specify the
accuracy of the integration technique through the variablenstream, the user has control over
the dependence on the fluid redistribution algorithm. This is not the case with other VOF
advection algorithms.

5. CONCLUSIONS

A new VOF advection algorithm, termed the Stream scheme, has been presented. The
algorithm uses a linear piecewise free surface reconstruction method, combined with a
unique fully multidimensional boundary flux integration technique. The performance of
the new algorithm has been compared against the performance of other VOF advection
schemes which use a variety of interface reconstruction techniques and a variety of boundary
flux calculation techniques. In almost all tests performed, the Stream algorithm displayed
a level of accuracy higher than the alternative algorithms, although possibly at a greater
computational expense.

Additionally, an analysis of errors generated by the Stream scheme when performing
an advection calculation has been included. It was found that, in general, free surface
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reconstruction errors dominate total advection test errors. The error minimization method
of free surface gradient calculation due to Puckett [14] generally produces spatially sec-
ond order surface reconstructions, while the gradient calculation method due to Youngs
[20] produces lower order reconstructions. Interestingly, when using a piecewise linear re-
construction technique, surface reconstruction errors are minimized when the time step is
maximized; however, the reconstruction error remains bounded as the time step is reduced
to zero, ensuring the viability of the technique.
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