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A new VOF advection algorithm is presented, termed the Stream scheme. The
algorithm uses a linear piecewise method for free surface reconstruction, coupled
to a unique fully multidimensional method of cell boundary flux integration. The
performance of the new algorithm is compared against other VOF advection algo-
rithms using a variety of standard advection tests. In general, the performance of
the Stream scheme appears superior to existing multidimensional and dimensionally
split advection algorithms. © 2000 Academic Press

1. INTRODUCTION

The Volume of Fluid (VOF) method is a convenient and powerful tool for modelling flui
flows which contain a free surface [10]. Under the VOF method, fluid location is recorc
using a volume of fluid function. In a single fluid calculation, this function is defined
unity within fluid regions and zero elsewhere. In numerical fluid simulations, where t
VOF function is averaged over each computational cell, the function becomes one in «
containing only fluid, zero in cells containing no fluid, and takes a value between th
limits in cells which contain a free surface.

The VOF method is capable of modeling flows with complex free surface geometri
including flows where fluid volumes separate and combine, yet it is remarkably econom
in computational terms, requiring only one mesh-sized array for storing the VOF funct
and an algorithm to advect the function during each computational time step. The me
used to advect the VOF function is the subject of this work.

Excellentreviews of pastand present VOF advection methods have been given by Ruc
[17], Rider and Kothe [16], and Scardovelli and Zaleski [18], so only a brief overview
some of the methods available will be given here.

As a Lagrangian invariant of the fluid, the VOF functidn, satisfies [9]
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2 HARVIE AND FLETCHER

Equation (1) describes the transport of a scalar quantity with the fluid, where the quar
varies continuously from one spatial point to the next. In reality however, the VOF functi
does not vary continuously from one point to the next, but rather experiences a disc
change over the infinitesimal dimension of each free surface interface. Consequently, sp
methods must be used to difference equation (1) so that diffusion of free surface interf
does not result [17].

One such method uses the Flux-Corrected Transport (FCT) Algorithm developed
Zalesak[21]. The FCT algorithm was developed as a general method for advecting any s
quantity, butit was applied to the process of VOF advection by Rudman [17]. Under the F
method, Eq. (1) is differenced using a combination of first-order upwind and downwi
difference schemes. The dependence on each scheme is chosen so that the advected s
contains no extrema that were not present in the previous time step solution. Rudman
demonstrated that the FCT-VOF advection method is not as accurate as modern piec
linear advection methods.

The majority of VOF advection methods are not derived from a direct difference fi
mulation of Eq. (1) but are instead developed using a two-stage process. First, free su
interfaces are “reconstructed” from the VOF data, so that a geometrical profile is fot
which approximates the actual free surface location. Changes in VOF values are then c
lated by integrating fluid fluxes over cell boundaries, using the geometrical profile to indic
the location of fluid regions. The different advection algorithms based on this two-st
process can be loosely classified according to the technique used to reconstruct the
surfaces in each cell and by the method used to perform the boundary flux integrations |

VOF advection methods that represent free surface interfaces as lines directed paral
one of the grid coordinates are known as piecewise constant schemes. The SLIC (Si
Line Interface Calculation) of Noh and Woodward [11] and the SURFER code of Lafau
et al.[8] are examples of a piecewise constant scheme.

A variation on the piecewise constant technique is the method used in the SOLA-V
code of Nicholset al. [10]. Under the Hirt—Nichols scheme, free surface interfaces a
orientated in directions parallel to grid coordinates but are also allowed the greater free
of a stair-shaped profile if local VOF distribution conditions permit. Similar algorithrr
include those developed by Chorin [3] and Barr and Ashurst [2].

The alternative to representing free surface interfaces as lines parallel to one of
grid coordinates is to orientate free surface interfaces in a direction perpendicular to
locally evaluated VOF gradient. Free surface interfaces within each cell can then aco
any orientation, and the geometrical profile of the fluid can more closely represent the ac
fluid geometry. Such schemes are known as piecewise linear schemes and include
developed by Debar [4], Youngs [20], Ashgriz and Poo [1], Puoke#t. [15], Rider and
Kothe [16], and Harvie and Fletcher [6]. These schemes tend to be more complex than
piecewise constant cousins, but they have been shown to be significantly more acci
[7, 12, 17].

The method of integration used to determine cell boundary fluxes is also used to cla:
VOF advection techniques. Under operator or dimensionally split schemes, boundary fl
are calculated independently in each coordinate direction, often with some type of lim
employed to reduce possible undershoots or overshoots occurring in cell VOF values.
surfaces are usually reconstructed between integrations in each of the coordinate ¢
tions under this technique. The Youngs algorithms are examples of operator split sche
[19, 20].
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Multidimensional schemes can be more accurate and efficientin calculating cell boun
fluxes than operator split schemes [16]. Under a multidimensional scheme, cell boun
fluxes are calculated with a dependence between fluxes calculated in each of the coorc
directions. Example multidimensional schemes include those developed by Ratckiett
[15], Rider and Kothe [16], and Harvie and Fletcher [6].

The Stream scheme, as developed in this study, is a piecewise linear scheme witt
boundary fluxes integrated using a fully multidimensional technique. While the interfe
reconstruction technique used by the Stream scheme is similar to methods used by
VOF advection schemes, the multidimensional integration technique used by the Str
scheme is quite new and unique.

In this paper, we detail and analyze the new advection scheme. This is accomplishe
three sections: The first section defines the conceptual and theoretical basis for the sc
and outlines the solution procedure used to implement the algorithm. A comparisol
the performance of the Stream scheme against existing advection algorithms is then g
using for comparison several standard VOF advection tests. Finally, an analysis of the e
generated by the Stream scheme when advecting a fluid form, and associated conver
rates, is given.

2. THE STREAM VOF ADVECTION ALGORITHM

2.1. The Basic Method

The idea behind the Stream algorithm is simple and can be summarized as follows:

1. Fluid interfaces are reconstructed in each cell using a piecewise linear inter
method.

2. Asemicontinuous velocity field is defined throughout the computational region, ba
on the staggered cell boundary velocities.

3. Donating regions for each cell boundary are defined by integrating back in time
the duration of the computational time step along fluid streamlines passing through
examined boundary.

4. Boundary fluxes are calculated as the intersection between each donating regiot
all fluid locations.

The primary tasks involved in implementing the Stream algorithm are defining a suita
velocity field, reconstructing the fluid free surfaces, and integrating along streamline
determine fluid volume fluxes occurring over each boundary. It is these three topics wi
we now examine.

2.2. Defining the Velocity Field

The velocity at any point in a given céll j is defined as

VX, y) = {xoX + xy}i + {=xpY — xx}i» 2
where
Xb = ks B _ _vjf%, 3
Xip3 = X1 Yj+: —Yj-1

Xx = —XbYj-1 —Vj_1 (4)
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and
Xy = —XpXi_1 +Uj_1. )]

Integer subscripts in these equations refer to cell-centered quantities, while integer ve
plus or minus a half refer to quantities located at cell upper or lower boundaries, respectiy
The velocity in thex coordinate direction isi, and that in they direction isv. Note that
the equality in Eq. (3) follows from the continuity equation applied to the examined ce
namely

CCNMCLUNNEE S S £ B/ Y (6)
X Y Xyi—X_1 Vi1 -Vl

The velocity field given in Eq. (2) can also be expressed in terms of the stream funct

U = ypXY + xxX + xyY, (7

where the standard stream function has been defined via

A v
u=-— and v=—-——, 8)
ay aX

and we have assumed the boundary condition for integratigd, 0) = 0.

Equation (2) specifies a simple velocity field which varies linearly between cell bour
aries and satisfies the continuity equation everywhere. The normal components of the
locity field at cell boundaries are continuous between cells, but the tangential compon
are not. The velocity field is not continuous at cell vertex points. The velocity field discc
tinuities would be problematic if we were to integrate exactly along streamlines from c
vertices, but the integration method we present later avoids this inconvenience.

The stream function defined by Eq. (7) is continuous throughout the computatio
domain. Note that fluid fluxes over cell boundaries are constant along the length of €
boundary, and consequently streamlines intersecting each boundary, which are sep:e
by equal volume fluxes, are equally spaced.

Examples of various in-cell velocity fields, represented as fluid streamlines, are sht
in Fig. 1. The cells shown in the figure have the nondimensional dimensions &f &nd
the corresponding velocity field constants are shown alongside each streamline trace. (
(D) and (E) in Fig. 1 are the only cases wjth# 0—the streamlines in these two examples
are curved.

2.3. Free Surface Interface Reconstruction

A piecewise linear interface method is used by the Stream scheme for locating f
regions. The method involves two steps for each interface reconstruction—determining
gradient of the interface within each cell, and positioning the interface within each cell
equate the calculated cell VOF volume to the volume contained between the free sur
and cell boundaries.
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FIG. 1. Example in cell velocity fields, represented by fluid streamlines. In each case, streamlines ha
stream functions equally spaced in the rarde< ¥ < 1 are shown.

2.3.1. Free Surface Gradient Calculation

In this study we have used two alternative methods for calculating the free surface
dient. The first method, of Youngs [20], is taken from the RIPPLE code of Ketlsd.
[7]. 1t is referred to as the Youngs method. The second method used in this stud
an error minimization method. The error minimization concept and the specific mett
used here are both from Puckett [14]. This second method is referred to as the Pu
method.

The implementation of the two interface gradient calculation methods is now presen
A comparative analysis of the accuracy of the methods is included in Section 3.

The Youngs methodUnder the Youngs method, interface normals are first calculat
at each of the four vertices of each cell as the gradient of the VOF function,

n=VF. 9
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FIG. 2. VOF normal locations used by the Youngs method of interface gradient calculation [7]. The sha
area is the actual fluid location.

Following [7], and referring to Fig. 2 for notation, Eq. (9) is differenced using

(Fitsj+1— Fij+08y) + (R — Fi,j)5)’j+1}i
(BYj + 8Yj+1)8%i 1172
{(Fi+1,j+1 — Fiy1))8% + (Fij+1 — Fij)dXi 41 } .
+ ].
(8% + 8Xi+1)8Yj+1/2

Nit1/2,j+1/2 = {

(10)

Cell-centered normals are calculated by averaging these vertex normals, so that the cer
normals are effectively calculated using VOF data froma®mesh,

1
ni,; = 2 (ni+1/2,j+1/2 + Niy12j-1/2 + Ni—1/2,j-172 + ni71/2,j+1/2)- (11)

The orientation of the fluid interface is set perpendicular to this cell-centered normal.

The Puckett method.Under the Puckett method, each interface orientation within ea
cell has associated with it an error function. When this error function is minimized, we fi
the optimal free surface orientation. The error function for the Puckett method is define
follows;

1. Given agradient, the interface is reconstructed such that the volume of fluid contal
between the interface and cell boundaries is equal to the volume of fluid within the exami
cell. The method used here follows that described in Section 2.3.2.

2. The fluid interface is continued beyond the boundaries of the examined cell so th
traverses a total of 8 3=9 cells, with the examined cell at the center.

3. Volume of fluid functionsF*, are calculated for each of the surrounding 8 cells base
on the extended reconstructed interface.

4. Finally, the error associated with the reconstructed interface is calculated. The €
function is defined as

Ej= Y  (Fam—Fip? (12)

—Li+1

=j—1,j+1

m
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whereF, , is the actual VOF function for cefi, m, andF is the VOF function for cell
n, m based on the extended reconstructed interface, as described above.

Under the Stream scheme, the Puckett method is implemented for each examinec
using athree-step process. First, an estimation of the interface gradient is calculated usir
Youngs method. The interface is then rotated from this first approximation, using discr
variably sized steps, until the local minimum of the gradient error funcEgpp, is bounded.

A standard Golden Section search routine, taken from Reesas [13], is then used to
determine the final, minimum error, interface gradient. The tolerance used in this work
determining the minimum error orientation was 1.0-° rad.

Experimentation with the error minimization technique showed that finding a minimt
to the error function in the locality of the Youngs orientation estimate, rather than attemp
to find an absolute minimum to the error function over all possible interface orientatio
tended to produce greater free surface reconstruction accuracy.

2.3.2. Free Surface Interface Positioning

Once the interface gradient has been determined, positioning of the interface within ¢
cell is accomplished by equating the volume of fluid contained under the interface to
volume of fluid contained within the cell. Under the Stream scheme each interface loca
is described by two points—a left point and a right point. Both points lie on a cell bound:
and both points lie on the interface line. The relationship between the points determine:
position of the fluid within the cell—when looking along the interface line from the le
point toward the right point, fluid is located to the left of the interface.

Interface positioning is accomplished in the code using first a series of logic step
determine which boundaries of each given cell the interface intersects with, followed
a number of analytical expressions which equate the area under the interface to the
contained within the cell. For example, in the cell shown in Fig. 3, fluid is located to t
left of the interface line, and the left and right interface points would be calculated usin

1 n
Xett = X1+ Fij 0x + 5 8yn—y, (13)
X
yleft = yj—l» (14)
(xri t’yright)
Y;
n
Yia
Xioy (xleﬁ’yleﬂ) X

FIG. 3. Example cell showing location of left and right points.
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1 n
Xiight = Xi—1 + Fi j X — > sy -2, (15)
Ny

and

Yright = Yj- (16)

The method used to calculate cell boundary fluxes is now examined.

2.4. The Fluid Boundary Flux Calculation

Ideally, we would like to integrate Eq. (2) exactly with respect to time to determir
donating regions associated with each boundary and then determine the intersection bef
these regions and the fluid regions to calculate fluid boundary fluxes. In practice howe
such a procedure would be extremely computationally complex for two main reasons;

1. A fluid particle that flows through a particular boundary during a discrete time st
and exists on a particular streamline may pass through many cells en route to that boun
It is the starting positions of such particles that define a donating region for a given
boundary. The difficulty is that integrating along the path of a fluid particle, or streamlir
becomes more and more complex the more cells the particle passes through, as each ¢
a different velocity field. As a result, defining donating regions for boundaries which ¢
fluxing fluid from many cells becomes impractically complex. Determining the intersecti
between these irregular donating regions and the reconstructed fluid regions would
further complications.

2. Aspreviously discussed, the velocity field defined by Eq. (2) is continuous through
the computational domain, except at cell vertices. Thus, trying to integrate away from ve
points to define the fluid donating regions may not be computationally possible.

It is for these reasons that an approximate method of integration has been develop
determine fluid boundary fluxes.

2.4.1. Approximate Integration Method

The idea behind this approximate integration method is simple. Each boundary flu
split into a discrete number of streamtubes, each “tube” representing an equal flux of t
fluid and void volume. Fluid streamlines, determined using Eq. (7), define the upper:
lower boundaries of each tube. The length of each tube is determined by the length o
computational time step. The number of tubes that each boundary is splibiptg, is
determined by the user—the more tubes the greater the accuracy of the integration techr

To illustrate this point, Fig. 4 shows an example where the velocity at the right bound
of celli, j is positive, and fluid is fluxing through this boundary from célls andi, j +1
during the solution time step. This right boundary of delj is referred to as the “final”
boundary, as it is the last boundary a fluid particle would pass through before entering
i+1,j.

The volume of fluid in each streamtube which is fluxed through a particular final bound
during a time stept is approximately

L
Viiuid intube%/ w() f()dl, (17)
0
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upper tube bpundary

/“ streamline

boundary flux split into
L~ adiscrete number of
! “tubes’

lower tube boundary B
streamline —
characteristic fube L
channel streamline
i boundary flux

. B

streamwisg coordinate, /
cell if

—__ final boundary

FIG. 4. Example tube used to calculate the fluid flux over the right boundary of,gell

where a cell of unit depth has been assumed. In Eq.{U7)is the VOF function evaluated
along the central characteristic streamline of the tubés the nonconstant width of the
tube measured normal to the central tube streanlliseg streamwise coordinate along the
length of the tube directed upstream from the final boundaryl ardhe streamwise length
of the tube.

To determine the streamwise width of the tube, we note that the total volume of a sr
section of the tube, located laand of lengthsl, is approximately

sV =w(l)sl. (18)

Also, we note that as no fluid may cross the upper and lower boundaries of the tube
volume contained within this small section is equal to the volume flowrate through the fi
boundary of the tube multiplied by the time taken for a fluid particle to pass over the sn
section of the tube. Thus,

_ Ujj X (Syj

sV [td) — td + 8D, (19)

Nstream
wheret represents the time taken for a fluid particle to flow from the beginning of the tu
to positionl. Combining Egs. (18) and (19), rearranging, and taking the limél as 0
yields for the width of the tube,

w(l) = =52 Lty — gy = Uit

Nstream 910 8l Netream dI (20)
Substituting Eqg. (20) into Eq. (17) gives
Vi in ube = —M/L (&= S [T ar (21)
Nstream Jo dl Nstream .Jo
or
Ui.jdyj

Viid in tube = —— total fluids (22)
stream
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wheretioa fuig IS defined as the total time a fluid particle would spend in fluid regions, whe
moving for timeést along the central tube streamline toward the final cell boundary ovel
stationary fluid geometry.

Once individual tube fluid fluxes have been determined, VOF values are incremer
using

Viiuid in tube
Fa=Fat+ ————>= 23
A A+ OX X 8Y)a (23)
and
V -
FD _ FD . fluid in tube (24)
(86X x 6Y)p

for all streamtubes along each boundary. In Egs. (23) and (24) the subsalgntifies the
accepting cell, which is defined as the cell immediately downstream of the final bound
while the subscripD identifies the donating cell, which is the cell immediately upstrear
of the final boundary. Note that although fluid volumes may be calculated using flt
geometries and velocity fields from other cells, the calculated flux refers to the amoun
fluid passing through each examined cell boundary during each time step. Thus, du
a boundary flux calculation only the VOF values for the accepting and donating cells
changed.

2.4.2. Fluid Particle Trajectory Calculation

In calculatingtiota fiuig for each tube, we recognize that a streamtube may pass throt
more than one cell en route to the final cell boundary. To simplify computational calculatic
we divide the total tube length into sections contained within individual computational ce
Thus, we can specify

tiotal fluid = > tiuid, (25)

all cells along central
tube streamline

wheretyiqg is the time a fluid particle would spend in the fluid region of an individual cel
when moving along the central tube streamline over a stationary fluid geometry. We :
definet.emainas the length of time elapsed when a fluid particle travels between the star
a central tube streamline and a particular cell. For example, at the final boundary of a t
tremain= 6t.

Using these definitions, the integration problem now becomes one of travelling backw
along each central tube streamline, from each examined final boundary, calcty|afifuy
each cell passed through en route. When we reach the start of the streamtidhes O,
indicating that the tube integration is complete.

Details of the numerical procedure used to implement these calculations can be four
[5]- The procedure itself is straightforward; however, it relies on a few mathematical utiliti
concerning the velocity field and interface positioning which we will now examine. In tf
following, W, is defined as the characteristic stream value for the central tube stream
being calculated. It is evaluated using the stream equation (7) at the center of the strean
under examination.
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Length of tube remaining.It is necessary to calculate the starting point for a tube, |
order to ascertain whether the tube finishes within a particular cell or not. For the exan
shown in Fig. 4, where fluid is flowing in the positive direction over the right vertic:
boundary of cell, j, the startingk coordinate of the tubeeng, is given by

Xy

1T Xytremain if xp =0
x_]; [<Xbxi+% + XY) exp(— xbtremain) — Xy} if xp 20

Xend = (26)

Intersection between cell boundaries and central tube streamlie also need to know
whether a streamtube continues beyond the boundaries of an individual cell. Again usin
example of Fig. 4, th& coordinate marking the intersection between the central streamli
and the upper boundary of céllj is given by

We — Xxyj+%

(27)
bej+% + Xx

Xtop =

if XbYj+1 + Xx # 0, otherwise the intersection point is not defined.

Intersection between afluid interface and central tube streamliée need to determine
the intersection points between the free surface interfaces and central tube streamlir
each cell that the streamtube traverses. Free surface interface lines are defined using t
and right point method, as discussed in Section 2.3.2. In calculating the streamline anc
surface intersection points, we cast the interface curves into a different form, namely

AxX 4+ AyY = Ac. (28)

The constants appearing in Eq. (28) are evaluated in each cell using

Yieft — Yright
Ay = , (29)
§ V/ (Xieft — Xright)? + (Vieft — Yright)?
Xright — Xieft
= (30)
YT/ (Xiett — Xeigh)Z + (Yiett — Yright)2
and
Ac = AxXright + Ay Yright- (31)

Finding the fluid interface and central streamline intersection points now become
question of solving the stream equation (7) and interface equation (28) simultaneously.
form of the solution to this problem depends on the form of the two curves. The differ
alternatives are listed below for the case of flux through a vertical cell boundary:

1. Horizontal interfaceiy = 0. If xpAc + xxAy # 0 then

Weky — XxAc

: (32)
XbAc + Xx)&y

Xintersection=

otherwise no intersection takes place.
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2. Vertical interfacejy = 0.

A
Xintersection= -, (33)
Ax

3. Streamline is a straight lingp = 0. If Axxy — Ay xx # 0 then

Weky — XyA
Xintersection= _M» (34)
)»ny - )\yXx
otherwise no intersection takes place.
4. Streamline has curvature and interface finite nonzero gradient. Define
Ax — XxAy — XbA
b=ny XxAy — XbAc (35)
XbAx
and
WeAdy — XyA
= Yty tyhe (36)

XbAx

If the determinate of the solution to these equationsdefb? — 4c, is real, then at least
one intersection point occurs. If det0, then only one intersection point occurs, namely
—b

Xintersection= 7 . (37)

If the determinate is real and nonzero, then two intersection points occur, namely

—b + vdet —b — +det

Xintersection= 2 and Xintersection= 2 (38)

Similar solutions are used for intersections occurring in cells with horizontal flux bour
aries.

Determining whether a region is void or fluid The integration algorithm requires knowl-
edge of which regions along the central tube streamline are fluid or void. The method t
here is taken from Rideat al.[16]. Defining a function

H = (Yiett — Yright) (X — Xieft) + (Xright — Xief) (Y — Yieft), (39)

the point(x, y) is located within a fluid region iH > O.

Time taken to traverse fluid regionOnce the fluid region has been defined in terms ¢
intersection points on the characteristic tube streantlipgcan be calculated. For example,
say pointsx; andx, define the extremes of the fluid region within a particular streamlin
in a particular cell. The length of time a fluid particle takes to cross this region is given

l -
X1 ’*(Xl—Xg)’ if xp=0
tiuia = / u(xl " dX‘ =" , (40)
5 1 Xo + .
. S]] it #0

where we have assumed the particle exits the cell through a vertical boundary.
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2.5. Algorithm Accuracy
2.5.1. Fluid Volume Conservation

The accuracy of the Stream VOF advection algorithm in conserving volume is depent
on the accuracy of the integration algorithm used to calculate boundary fluid fluxes.
previously mentioned, the accuracy of the integration algorithm is dependent on the
specified variablensyeam the number of streamtubes used in calculating each bound:
flux. The greater the number of tubes, the greater the accuracy.

Figure 5 shows an example of a “worst-case scenario” for integration accuracy. F
we see that fluid velocity streamlines are aligned with the free surface orientation, anc
magnitude of error that we could expect from a single boundary flux calculation could
as high as

ust C
Error(F) = O<> = O( ) , 41
2nstrearﬁsx 2nstream ( )

where the notatio® (z) specifies “of the ordez,” andC = uét /§x is the Courant number.

As detailed by Egs. (23) and (24), after each boundary fluid flux is calculated, fluic
added to the accepting cell, and the same amount of fluid is subtracted from the don:
cell. As aresult, fluid volume is rigorously conserved after the advection step. The diffict
is that integration inaccuracies can cause undershoot and ovefshabies, which when
brought back into the zero to one range, can cause net changes in fluid volume.

The solution is to corredt value overshoots and undershoots using a local redistributi
algorithm, after all boundary fluxes have been incremented, but before<tie-9 1 check.
The specific redistribution algorithm can be summarized by the schematic of Fig. 6.

2.5.2. Fluid and Void Wisp Generation

Integration inaccuracies can also cause “wisp” generation of either fluid in void regions
alternatively void in fluid regions. Wisps are generated when a free surface interface m
across the computational domain. If, for example, a fluid interface is sweeping across a
region, integration inaccuracies at the interface cause small amounts of void to rema

characteristic central
streamlines

fluid location (shaded)

streamtubes used in
alculating fluid flux

FIG.5. A worst-case scenario for border fluid flux calculation. The fluid free surface is orientated paralle
the integration tubes, and located close to a characteristic streamline.
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| Loop through all real cells |

Is F,>1 or F,<0?
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F .. with lowest real Fle— F.» With highest real |¢—
value. Fvalue.
Fro™Faa®F, Fron=Fuaa?F 1
F=max(F,,.0) F=min(F,, 1)
F,min(F,__,0) F=max(F,,.1)

Yes Yes

l

FIG. 6. Schematic showing the algorithm used to locally redistribute norfrealues.

the cells after the interface has passed, thus creating wisps of void within the fluid reg
Similarly, wisps of fluid in void regions can be created when a void interface sweeps c
an area of fluid.

Other terms previously used for VOF debris include “flotsam” and “jetsam.” “Wisp:
was chosen in this study, as it was felt that the term most accurately describes the low
fluid volume nature of the fluid or void trails produced under the Stream algorithm.

Obviously the level of wisp generation depends on the accuracy of the integration sche
and thus the magnitude of the user set variable.m In general, the amount of fluid or void
involved in wisps is small, even for small valuesgf.am but their presence is detrimental
to computational efficiency, as they require the discretized Navier—Stokes equations t
solved in cells that should not contain fluid.

Under the Stream scheme, wisps are eradicated using an algorithm similar to the ur
shoot and overshoot algorithm detailed above. For the case of a fluid wisp in a void reg
a cell is considered to contain a wisp if the cell, and all of its eight neighbors, conta
less than a certain proportion of fluid. This critical proportion is specified by the user
variable,Fyisp.

Once a fluid wisp is established, fluid is moved from the wisp cell to a neighboring ¢
which is estimated to be closer to the free surface interface. Exactly which cellis closer tc
free surface interface is specified by the direction of the free surface interface normal ir
wisp cell. In this case, the free surface interface normal is defined as the maximum grac
of the VOF function, calculated using the methods outlined in Section 2.3.1, ir & 3
array of cells surrounding the examined wisp cell. The VOF gradient within a wisp cell
determined in this fashion so that even if a wisp cell is separated from the interface regio
two cell dimensions, fluid is still moved in the direction of the actual free surface bounde

For the case of a void wisp in a fluid region, a cell is considered to contain a wisp if t
cell and all eight neighbors have VOF values greater tharFlis,. As for the fluid wisp
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case, once a void wisp is established, fluid is moved from cells closer to the free-sur
interface to the examined cell, thus removing the void in fluid wisp.

By destroying a wisp once it is generated, rather than using various criteria to limit fl
boundary fluxes, the Stream method wisp eradication technique has negligible effec
fluid geometry and is capable of removing both wisps of fluid in void as well as wisps
void in fluid.

While the wisp eradication algorithm is successful in removing wisps from computatio
its use unfortunately imposes a maximum time step on fluid dynamics computations. i
present form the wisp eradication algorithm can move the contents of a wisp cell one
dimension closer to the actual free surface interface per time step. It follows that if the ac
fluid interface is traveling a greater distance than one-cell dimension per time step, the
eradication algorithm is not capable of reuniting wisps with the main fluid bodies and v
consequently fail. For this reason the maximum time step which the Stream scheme
operate under without producing fluid wisps corresponds to a Courant number of unity

Note that if the cell boundary flux integration technique were exact, or alternatively if 1
wisp eradication algorithm could move wisps with a velocity comparable with actual flt
velocities, this time step limitation would not apply. In practice however most computatio
codes are limited by other stability criteria to a Courant number of less than or eque
unity, so development of a more complex wisp eradication algorithm is not justified.

Equation (41) gives the maximum expected error per boundary flux calculation. In
culating a suitable level foFy;sp, we note that each cell could be involved in up to fou
boundary flux calculations per time step, corresponding to four cell boundaries. Thu
suitable level for the critical wisp VOF value may be

2C

)
stream

Fuwisp = (42)
whereC is the maximum Courant number within the domain. In practice the level specifi
by Eq. (42) is overly conservative. In the advection test cases calculated in the follow
sections Fyisp Was set to half the value given above and still was successful in remov
all fluid wisps.

3. PERFORMANCE OF THE STREAM SCHEME

In this section the performance of the Stream algorithm is compared against other \
advection algorithms using a variety of advection tests.

3.1. Rudman Translation Tests

Translation tests provide the most basic measure of VOF advection algorithm per
mance. To facilitate comparison of the Stream algorithm against other algorithms, the f
of the test used here is taken from Rudman [17].

For this test a computational domain of dimensions4n?¥ is composed of 208 200
uniformly sized square cells. Two separate uniform and constant velocity fields, hav
the components (1, 0) and (2, 1), are used to advect the different fluid forms. Three 1
forms are advected—a hollow square orientated with sides parallel to the coordinate a:
hollow square orientated at 26 50 the axis, and a hollow circle. The major dimension o
each form is 0.8 m. A Courant number of 0.25 is used in all computations, and each te
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1.C. SLIC Hint-Nichols ~ FCT-VOF Youngs

T T T T T T T T T T T T T

FIG. 7. Advection with unidirectional velocity fields (1, 0) (top) and (2, 1) (bottom). At the left are the initia
conditions (I.C.) followed by the results for SLIC, Hirt—Nichols’ VOF, FCT-VOF, and Youngs’ method. (Figur
and caption are reproduced with permission from Rudman [17].)

performed over approximately 500 time steps. Further details of the form of the tests 1
be found in Rudman [17].

Figure 7, taken from Rudman [17], shows the initial position and final position fluid forn
for the above translation tests calculated using a number of VOF advection algorith
Figure 8 shows the final position fluid forms for the same tests as calculated by the Str
algorithm. In both figures each plot was generated using three VOF contour intervals, 0.
0.5, and 0.975, and for compactness the three different fluid forms tested are displaye
the same computational domain. Quantitative errors for each test are shown in Table
in [17], these errors were calculated using

_ g R — RS
Zi,j Fi(,)j ’
where F; is the calculated VOF function at the end of the tdsY; is the exact VOF
function at the end of the test, arﬁg?j is the initial VOF function. The Stream algorithm
calculations were performed usingeam= 1000 andFyisp = 2.5 x 104
A detailed comparison of the performance of the algorithms shown in Fig. 7 is giv
in Rudman [17]. In general the SLIC algorithm, which uses piecewise constant interf

E (43)
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FIG. 8. The straight translation tests of Rudman [17] repeated using the Stream algorithm. Cases (a) ar
show results for the (1, 0) velocity field, cases (c) and (d) show results for the (2, 1) field. Cases (a) and (c)
calculated using the Youngs method of gradient calculation, cases (b) and (d) using the Puckett method of gr:
calculation.

reconstructions, produces good translation results when the velocity field is aligned \
the coordinate axis, but poor results otherwise. The Hirt—Nichols algorithm, implemen
using a dimensionally split flux calculation, produces relatively poor results in all tes
As noted in Rudman [17], it is surprising that the Hirt—Nichols results are no better tt
the SLIC results, given that the Hirt—Nichols algorithm is the more complex of the t
linear constant reconstruction algorithms. The FCT-VOF algorithm produces results
are generally superior to the results generated by the linear constant algorithms, but re
that are generally inferior to the piecewise linear Youngs algorithm.

The Stream algorithm implemented with the Youngs interface gradient calculation
duces a similar level of accuracy to the original Youngs advection algorithm. Note that wi

TABLE |
Translation Test Error Results
Advection algorithm Square (P Square (26 Circle
Velocity field (1, 0)
SLIC 842x 108 1.46x 102 1.30x 102
Hirt—Nichols 103x 1078 6.91x 1072 4.55x 1072
FCT-VOF 389x 1078 2.32x 1072 1.28x 1072
Youngs 108 x 1072 5.35x 107° 3.08x 10°°
Stream/Youngs D9x 103 5.86x 1073 3.03x 10°°
Stream/Puckett B1x 103 457x 1078 142 x 1073
Velocity field (2, 1)
SLIC 132x 10! 1.08x 10t 9.18x 1072
Hirt—Nichols 686x 1072 1.60x 10t 1.90x 101
FCT-VOF 163x 1078 8.15x 1072 3.99x 1072
Youngs 258 x 1072 3.16x 1072 2.98x 102
Stream/Youngs 20x 1072 3.08x 1072 2.66 x 1072
Stream/Puckett 33x 102 3.15x 1072 6.96 x 1072

Note.All results expect those calculated using the Stream algorithm are
taken from Rudman [17]. Stream algorithm results were calculated using
both the Youngs and Puckett methods of free surface gradient calculation.
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both methods use the same interface reconstruction technique, the Youngs algorithm v
dimensionally split flux calculation technique, while the Stream algorithm uses a multi
mensional flux technique. It is not surprising that both results calculated using the You
method of interface reconstruction are similar, as the increased accuracy afforded b
Stream flux calculation method is only realized when velocity field streamlines are curv

For the square fluid form translation tests, the Stream algorithm coupled to the Puc
gradient calculation method produces errors that are similar in magnitude to the er
produced using the Youngs gradient calculation method, while for the circular fluid fo
tests, the Stream algorithm coupled to the Puckett gradient calculation method prod
errors which are superior those produced using the Youngs gradient calculation methc

As the curvature at the corners of a square is infinite, the errors generated during a st
fluid form translation test will always be limited by the resolution of the computational me
when alinear piecewise advection algorithm is used. However, this is not the necessaril
case when using a linear constant advection algorithm. Indeed, as shown in Table I, u
some specific circumstances the reduced resolution of the linear constant methods is a
predict the translation of the square forms to the precision of the floating point arithme

Fluid forms such as the square are not physically realistic fluid forms, however, as surf:
with infinite curvatures do not occur in real fluid flow situations. Therefore, any difficultie
experienced by piecewise linear methods in representing such surfaces do not occ
practice, and itis for this reason that the Stream algorithm, coupled to the Puckett methc
interface gradient calculation, is judged to be the most accurate algorithm in these transil:
tests.

3.2. Rudman-Zalesak Slotted Disk Rotation Test

The Zalesak slotted disk test has become a benchmark test for comparison of s
advection algorithms. Originally devised by Zalesak [21], the form of the test used her
taken from Rudman [17]. The test involves rotating a slotted disk through one comp
revolution within the computational domain under the action of a uniform vorticity velo
ity field. Advection algorithm accuracy can be gauged by comparing the initial and fir
positions of the disk.

The Zalesak test performed here uses the same computational domain as was us
the translation tests above. The disk has a diameter of 1 m, and one revolution of the di
completed in exactly 2524 time steps. Thistime step corresponds to a Courant number, k
on the maximum coordinate velocity existing within the domain, of approximately 0.2
Further details of the form of the test can be found in Rudman [17]. The Stream algorit
tests were performed withyeam= 1000 and a correspondiriisp = 2.5 x 104

Figure 9, reproduced from Rudman [17], shows disks calculated using several diffe
advection algorithms, while Fig. 10 shows the test repeated using the Stream algori
Quantitative errors for the different advection schemes, again calculated using equz
(43), are shown in Table II.

As with the translation tests, a detailed comparison of the performance of the four sche
evaluated in Fig. 9 is given in Rudman [17]. In general the Youngs method, which use
piecewise linear interface reconstruction technique, produces results which are significe
more accurate than the results produced by the linear constant methods. Again the |
VOF method appears more accurate than either linear constant method, but less acc
than the Youngs method.
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TABLE I
Slotted Disk Rotation Test Results

Advection algorithm Error
SLIC 8.38x 102
Hirt-Nichols 962 x 1072
FCT-VOF 329x 1072
Youngs 109x 102
Stream/Youngs D7x107?
Stream/Puckett .00x 1072

Note.All results except those calculated using
the Stream algorithm are taken from Rudman
[17]. Stream algorithm results were calculated
using both the Youngs and Puckett methods of
free surface gradient calculation.
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FIG.9. Zalesak’s test problem for solid body rotatidghcontours for initial conditions (I.C.) and results after
one revolution for each of the four schemes. (Figure and caption are reproduced with permission from Ruc
[17])

30

FIG. 10. The Zalesak slotted disk test from Rudman [17] repeated using the Stream algorithm. Re:
calculated using both the Youngs and Puckett methods of interface gradient calculation are shown.
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Comparing the results of Fig. 9 with those of Fig. 10, the accuracy of the Stream
Youngs algorithms appears similar. Examining the errors shown in Table I, howevel
appears that the Stream advection method coupled to the Youngs interface reconstru
method is slightly more accurate than the Youngs method, indicating that the Stream bo
ary flux calculation technique is marginally more accurate than the Youngs dimension
split flux calculation technique in this instance. The Stream scheme operating with
Puckett method of interface reconstruction produces the most accurate results in this |

The Zalesak rotation test results presented here are informative, but should be interp
with care. An analysis of the errors calculated in Table Il has shown that for the advec
algorithms tested, the primary region of error generation in each test was at the s
corners which define the slot in the disk. Thus, the Zalesak test results presented are la
a measure of the employed interface reconstruction technique to represent fluid interf
having high curvatures, rather than a measure of the accuracy of the different VOF
calculation techniques. It is for this reason that there are only minor differences in the er
generated by the different piecewise linear algorithms.

3.3. Rider—Kothe Reversed Single Vortex Test

A more thorough test of VOF advection is made when the velocity field contains nont
form vorticity, causing the fluid to deform and shear as it translated throughout the cc
putational domain. Such a test, taken from the work of Rider and Kothe [16], is perforn
here.

In the reversed single vortex test, a cylinder of fluid, of radius 0.15 m and centeret
(0.5, 0.75), is deformed in a velocity field specified by the Stream function

U= 1 sirt(x) sirf(ry) cos<m> . (44)
T T

The computational domain used in the test had the dimensiars i?, and the duration
of each test wa3 s. A Courant number of 1, based on the maximum coordinate veloc
within the computational domain, was used and the tests were performeaLith= 100
andFyisp=0.01.

Equation (44) specifies a vortex which shears the cylinder of fluid into a spiral ty
form. The temporal component of Eq. (44) is responsible for reversing the vortex. At ti
t=T/2 s, the deformation of the cylinder should be at a maximum, while at the end of
test, the fluid should return to the initial position. Thus, like the Zalesak test, an indicat
of the accuracy of the advection algorithm can be gauged by comparing the initial and f
positions of the fluid form. Further details of the form of the test can be found in Rider a
Kothe [16].

Figure 11 shows the reversed vortex test computed using the Stream scheme coup!
the Youngs gradient calculation method, calculated using a variety of mesh sizes and
different test durations. Figure 12 shows the same tests computed using the Stream sc
coupled to the Puckett gradient calculation method. In both figures the VOF function is
represented by contour lines, but rather as individual blocks of fluid with each cell interf:
represented using the techniques outlined in Section 2.3. This method of representati
consistent with the results presented in Rider and Kothe [16] and allows comparison of
accuracy of the alternative interface reconstruction techniques.



THE STREAM SCHEME 21

10 10
i T ' /;‘_/ T

08 0 5 08 L TR

-:\—m-. Emae #: I\.‘_ % ;,

06 i 06 i ’

04 06 04 06
@ (b)

1.0 g 1.0

L - & @ { o8} : i ,

06 ﬁﬁ m‘% @ 06 o 4

04 @ %31 SN B |

02 8 @ - 02

00 - 00

00 02 04 06 08 10 00 02 04 06 08 1.0

© @

10 - 10
08
06 08
04
02 & 06
LT .
00 ' . = '
00 02 04 06 08 10 04 086

(€ ()

FIG. 11. The reversed single vortex test performed using the Stream scheme coupled to the Youngs m
of interface gradient calculation. Cases (a—d) are performed ohraésh, and cases (e) and (f) are performed or
a 128 mesh. Case (a) us&s=0.5, case (b)] = 2.0, and cases (c—flj = 8.0. Cases (c) and (e) show the cylinder
att =T/2, while the remainder show the cylindertat T. All times are measured in seconds.

Figures 11 and 12 show qualitatively similar results. Case (a) in both figures shows
final fluid form after aT = 0.5 s test performed on a coarse?3@esh. In both figures the
fluid has returned to the starting position with reasonable accuracy. Case (b) in both fig
shows the test repeated, but over a longer duratioh-6f2.0 s. The final fluid position is
now less accurate, a result of the greater amount of deformation the fluid is subjecte
during the test.

Cases (c) and (d) in Figs. 11 and 12 show the coarse mesh computations repeated
T =8.0 s. The final fluid form in both figures, shown by case (d), is significantly in errc
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FIG. 12. The reversed single vortex test performed using the Stream scheme coupled to the Puckett m¢
of interface gradient calculation. Cases (a—d) are performed ohragsh, and cases (€) and (f) are performed or
a 128 mesh. Case (a) us#s=0.5, case (b) = 2.0, and cases (c-fl) = 8.0. Cases (c) and (e) show the cylinder
att =T /2, while the remainder show the cylindertat T. All times are measured in seconds.

As shown by case (c), this is a result of the fluid breaking into a number of discrete “glo
at the time of maximum deformation=T/2 s.

Breakup of the spiral occurs because the width of the fluid form becomes less than
computational cell dimension. In these cases, the interface reconstruction technigue t
to arrange the small amounts of fluid in each cell as close together as possible, causin
fluid to glob. This process can be thought of as numerical surface tension. As showr
effect is only evident when the dimensions of the fluid region are similar to or smaller tt
the dimensions of the computational cells. In real fluid simulations, where the fluid fo
should have dimensions larger than the dimensions of the cells, its effect is negligible.
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Cases (e) and (f) in Figs. 11 and 12 show the long duration test repeated using a
128 mesh size. As indicated in case (e), the spiral is now more accurately represe
att =T/2 s, which results in a more accurate fluid reconstruction at the end of the t
Inaccuracies present at the top of the circle in case (f) are caused by the minor bre
of the spiral at its thinnest end in case (e), while inaccuracies present at the bottom o
circle in case (f) are caused by inaccuracies in the reconstruction of the thicker end o
spiral throughout the duration of the test.

Comparing Figs. 11 and 12, it appears that the Puckett method of free surface re
struction results in a higher accuracy advection calculation than the Youngs method.
is particularly evident in the long duration tests, where the degree of fluid breakup at
time of maximum deformation is significantly less when using the Puckett method rat
than the Youngs method.

In some cases small amounts of fluid appears in cells which are separated from the
surface interface by approximately one cell dimension or less. These amounts are d
the approximate boundary flux integration technique employed by the Stream scheme
are not redistributed by the wisp eradication algorithm as they are in the close vicinity
an interface. There were no wisps generated in any of the tests which did not remain it
close vicinity of an interface.

Table Il shows quantitative errors calculated during the reversed vortex tests. To mair
consistency with Rider and Kothe [16], errors are calculated here using

— oy |ED e
E=> sxsy|F" —FSl. (45)
i
TABLE Il
Geometrical Advection Test Errors and Convergence Rates
T=05 T=20 T=80
Grid Error Order Error Order Error Order
Rider—Kothe/Puckett

32 7.29x 104 2.36x 107 4.78x 1072
2.36 201 278

642 1.42x 10 5.85x 1074 6.96 x 1073
1.86 216 227

128 3.90x10°° 1.31x10* 1.44x 1073

Stream/Puckett

32 5.51x 10 2.37x 1073 3.72x 1072
2.32 207 245

64 1.10x 10 5.65x 10~ 6.79x 1073
171 210 253

128 3.38x 10°° 1.32x 10 1.18x 1073

Stream/Youngs

32 3.42x 10 249x 1073 3.61x 102
0.99 182 185

64 1.72x 10 7.06x 1074 1.00x 1072
0.84 166 222

12¢& 9.60x 10°° 2.23x10* 2.16x 1073

Note.Results shown for the Rider—Kothe scheme are taken from Rider and Kothe [16].
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where as previousl¥; is the calculated VOF function at the end of the test, Bfidis
the exact VOF function at the end of the test. This error has the unitg.of m

Comparing the Stream algorithm errors computed using the two alternative interf
reconstruction methods, the Youngs method appears generally less accurate than the P
method, except during the coarsest grid tests. This result supports the observations
in Rider and Kothe [16], where it was found that the Youngs method provides a hig
level of reconstruction accuracy than error minimization methods when the curvature of
fluid feature has dimensions which are of magnitude similar to the cell dimensions. For
majority of the tests, however, the Puckett method results in errors which are significa
smaller than errors calculated using the Youngs method.

Comparing the errors calculated using the Stream scheme coupled to the Puckett |
face gradient method, and the Rider—Kothe scheme coupled to the same interface gre
method, the Stream scheme appears to be more accurate. In all but two of the nine test
errors calculated by the Stream algorithm are significantly smaller than those calculate
the other multidimensional advection algorithm.

The ordervalues shownin Table lll are calculated as the convergence rates of the adve
test errors as the grid size is refined. As a constant Courant number is used in all tes
the mesh is refined, the time step used in the tests is also decreased. Consequent
convergence rates shown in the table are an indication of the combined spatial and tem
accuracy of the algorithms, as will be discussed further in Section 4.3. In general
schemes employing the Puckett reconstruction technique are of second order accL
while the scheme employing the Youngs method is of a slightly lower accuracy.

In the next section, an analysis of the origin of errors generated during the differ
advection tests performed using the Stream algorithm is given.

4. ALGORITHM ERRORS AND ERROR CONVERGENCE RATES

Fluid volume errors calculated by the Stream algorithm during a fixed duration advect
test are composed of errors resulting from free surface interface reconstructions and €
resulting from cell boundary flux calculations. Thus, we may represent the total volu
error found during an advection test by

E= Efree surface reconstructiort EceII boundary flux (46)

The free surface reconstruction error is composed of a spatial and temporal error,

Efree surface reconstructiof Al(sxnl f (C)» (47)

whereA; is a constanty; is the spatial order of the free surface reconstruction algorithr
and f (C) is a function of the Courant number,

ust
C=—. 48
86X (48)
The cell boundary flux error is composed of three terms,
u \™
Ecell boundary flux= Adx"™ 4 Agst™ + A4< ) . (49)
Nstream

The first two terms on the right side of Eq. (49) represent errors resulting from the differe
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between the velocity field assumed by the Stream algorithm, and the actual velocity f
imposed in the advection test. The third term on the right side of Eq. (49) represents el
resulting from the approximate integration method employed by the Stream algorithm.

During an advection test where the velocity field is constant in time, the temporal te
in Eq. (49) becomes zero. Also, if the actual velocity field assumed in the advection
can be represented exactly by the velocity field assumed by the Stream algorithm, the
spatial term on the right side of Eq. (49) is also zero. A velocity field which satisfies the
two criteria is that used in straight translation tests.

In the remainder of this section, we analyze the convergence rates and behavior o
errors given by Eqgs. (47) and (49).

4.1. Approximate Cell Boundary Flux Integration Error

A detailed discussion of the convergence rate of the approximate cell boundary
integration error is included in this study, as among VOF advection algorithms, this el
is unique to the Stream algorithm.

An estimate of the order of convergence of the flux integration enggrcan be found
by consideration of Eq. (41). As each cell has four individual boundaries, the total volu
error produced during a single computational time step is

(50)

2usté
Error(V) = O< - X> ,

nstream

whereV represents fluid volume.

Under the Stream algorithm, integration errors only occur in cells which are in the vicir
of a free surface. Thus, given a length of free surface inter&adhe number of cells in
the computational domain which will sustain integration errors during a single time ste
proportional toS/é§x. Also, over an advection test of duratidn the number of time steps
completed is proportional td/5t. Consequently, applying Eq. (50) over the volume an
duration of an advection test, we may expect the cell boundary flux integration error tc
proportional to

Equx integration errorX ST (51)

nstream
This implies that the order of convergence of the integration emgois one.

To validate this theory, we perform a simple translation advection test. In this test a ci
of fluid, of radius 0.2 and initially located at coordinates (0.25, 0.25), is translated with eg
velocity components (1, 1) for 0.5 s throughout a computational domain having dimensi
1 x 1 m?. Under an exact advection method, the fluid should remain in the form of a cir
and be centered at (0.75, 0.75) on completion of the test. A Courant number of unit
used, and Eq. (45) is used to quantify the advection test error.

As the streamlines assumed in this simple translation test are straight and consta
time, the first two error terms in Eq. (49) can be neglected. Also, as the Courant numbe
both dimensions are constant and equal to one throughout the domain, the fluid conte
within each cell should translate entirely to one adjacent cell during each computatic
time step. As a result, free surface interface reconstructions should be identical at all ti
Thus, the error term given in Eq. (47) can be neglected, and the total advection test
calculated is composed of only the boundary flux integration error.
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FIG. 13. Boundary flux integration errors calculated during a simple translation test. The vamiahlg
ranges between 2 and 1024 and results found using four different mesh sizes are displayed.

Figure 13 shows the advection test errors calculated using four different grid sizes,
values ofngreamranging from 2 to 1024. For these tests the dewisping algorithm detail
in Section 2.5.2 was deactivated, and the Puckett interface gradient calculation methoc
employed. Figure 13 shows that the order of convergence of the boundary flux integra
error is approximately constant, and as suggested by the above analysis, is independ
grid size and time step. The average order of convergence calculated over the four test
ny=1.6. This is slightly higher than the order of unity suggested by equation (51), but
of a similar magnitude.

As discussed by Rudman [17], during fluid flow computations the CPU time expenc
on advecting the VOF function is generally small compared with the time spent solving
discretized Navier—Stokes equations, so the computational efficiency of the overall coc
not critically dependent on the efficiency of the VOF advection algorithm. Indeed, the pres
authors have found that a higher level of accuracy in the VOF advection process can ¢
allow a larger time step to be used in the calculation, thus reducing the total computati
cost of a fluid simulation. However, an analysis of the computational expense of the Str
algorithm is included, primarily to show the effect the variatjg.amhas on computational
efficiency.

Figure 14 shows the CPU time spent on calculating the reversed single vortex test
scribed in Section 3.3. The test was calculated u3irg2.0 s, and performed using the
Stream algorithm with either the Youngs or Puckett methods of interface gradient calci
tion. The variablensyeamwas varied between 2 and 1024.

The results of Fig. 14 show that the computational expense of a fluid simulation incres
asngreamincreases and as the number of computational cells increases. The Puckett me
of gradient calculation is more expensive than the Youngs method, as the Puckett meth
iterative, requiring a total of nine cell interface reconstructions in each cell for each interf
orientation iteration.

It was found that the computational expense of the Stream scheme is comparable
other multidimensional schemes when the varialgjg,mis less than 10. Increasimgyeam
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Reversed Single Vortex Test CPU Time (s)

FIG. 14. CPU time used when performing the reversed single vortex testit?.0 s.

to 100 results in an approximately order of magnitude increase in the expense of the sct
but atthese levels the use of the scheme is still viable. As shown in Fig. 14, avalue of 100
NstreaminNCreases the computational expense by approximately a further order of magnit
As demonstrated by the results of Fig. 13, such a high levelefmnis unjustified in real
fluid simulations—the additional computational time would be better spent on a finerm
computation.

4.2. Free Surface Reconstruction Errors

As indicated by Eq. (47), the free surface reconstruction error is composed of a sp
and temporal component. We will consider first the spatial component, followed by
temporal component.

To determine the order of convergence of the spatial component, the simple circle tr
lation test detailed in the previous section is repeated, but with a number of changes
previously, as the test involves only straight translation, the first two terms on the right s
of Eq. (49) are zero. In order to examine just the reconstruction error, a nonzero and con
Courant number is used throughout the domain, and the vanghlgis setto 1024. Such
a high value fongyeamensures that approximate integration errors generated during the
are several orders of magnitude smaller than free surface reconstruction errors, anc
result, advection test errors found during this test approximate free surface reconstru
errors.

Figure 15 shows the free surface reconstruction errors calculated during the translatio
using both the Youngs and Puckett methods of interface gradient calculation. The adve
test errors calculated using the Puckett method converge consistently with grid refinen
and the average convergence rate found over the three series of testg=whg. This
result is in agreement with the spatial surface reconstruction results presented in F
and Kothe [16], which conclude that the Puckett method generally produces second-c
surface reconstructions.
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FIG. 15. Free surface reconstruction errors calculated during the circle translation test using both the Yo
and Puckett methods for interface gradient calculation. The results shown were calculated using four computa
cell sizes and three Courant numbers.

The convergence of errors calculated using the Youngs method is less consistent,
notable increases in reconstruction error occurring during two of the tests when the cor
tational cell size is reduced from 0.05 to 0.025 m. Experience using the Youngs methoc
shown that generally the method does converge consistently with grid refinement, althc
the rate of convergence is significantly lower than that found using the Puckett metho
gradient calculation. The study of Rider and Kothe [16] concluded that the Youngs metl
produces generally first-order surface reconstructions.

The errors calculated using Youngs method of gradient calculation on the coarsest ¢
are lower than the errors calculated using the Puckett method on the same grids.
observation supports both of the observations made in Section 3.3 and the grid reconstru
results presented in Rider and Kothe [16]. The Youngs method is more accurate that
Puckett method in approximating a continuous free surface interface when the curvatu
the interface is of a similar magnitude to the computational cell size.

The dependence of the free surface reconstruction error on the Courant number i
scribed byf (C), as defined in Eq. (47). To determine the form of this function, we repe
the circle translation test using the same conditions that were used to determine the sj
reconstruction error convergence rate, however in this test the Courant number is red
from 1 down to 3.9 10~3 while the mesh size remains constant.

Figure 16 shows the free surface reconstruction errors calculated during the advet
test as a function of the inverse Courant number. The test has been repeated using b
Youngs and Puckett gradient calculation methods and using three different mesh size:

The results of Fig. 16 indicate the forf(C). The reconstruction error is at a minimum
when the Courant number is unity, but approaches a maximum value asymptotically a
Courant number approaches zero. This suggests that to minimize the free surface re
struction error when using a piecewise linear reconstruction algorithm, the time step sh
be set as high as possible. Both the Youngs and Puckett gradient calculation methods |
in similar forms for f (C).
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FIG. 16. Free surface reconstruction errors calculated as a function of the Courant number. The test has
repeated using both the Youngs and Puckett methods of free surface gradient calculation and using three di
grid sizes.

That the free surface error approaches a maximum value asymptotically as the Cot
number is reduced is important to the viability of the method. If the error were to incre:
unbounded as the time step approached zero, the method could not be relied upon
small time steps were required, and would not be viable.

In the simplest terms the form df(C) is caused by the nature of the reconstructiol
technique. Each time the free surface is reconstructed, a discrete amount of error is &
to the simulation, because the linear interfaces used in the computation can never ex
reproduce the form of the actual free surface. The smaller the Courant number, the more
steps are required to calculate fluid behavior over a set duration, and consequently the g
the amount of free surface reconstruction error is introduced. The reconstruction e
remains bounded as the Courant number approaches zero because under such conditic
change in surface reconstruction between time steps is only slight, and so the reconstrt
error introduced at each time step is only small.

Note that in this advection test there is no free surface reconstruction error when
Courant number is one. As was described above, this behavior is a result of the si
translation form of the advection test. In realistic free surface flow computations, the Cou
number would not be constant and uniform throughout the computational domain, anc
reconstruction error would not vanish at a Courant number of one. However, during ac
free surface flow computations the free surface reconstruction error would still be minimi
at the maximum Courant number.

4.3. Cell Boundary Flux Errors

The final two error terms to consider are the first two terms on the right side of Eq. (49
the cell boundary flux errors. These two terms are not dependent on the accuracy of
integration specified bysyream but as discussed above, they account for errors due to spa
and temporal differences between the velocity field assumed by the Stream algorithm
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the actual velocity field used in the advection test. As discussed above, during a sir
translation test, these terms vanish.

Generally, the free surface reconstruction term is of a magnitude larger than any of
flux calculation error terms shown in Eq. (49) during an advection test. Even in the rever
single vortex test described in Section 3.3, where the velocity field could not be represe
exactly by the Stream velocity field and the velocity field was not constant in time, t
advection test errors were dominated by free surface reconstruction errors. This is evi
in the high degree of dependence the test results had on the method of interface gra
calculation.

Nevertheless, the results of Section 3.3 do indicate that the cell boundary flux er
introduced by the Stream algorithm are lower than comparable errors introduced by
multidimensional Rider—Kothe scheme. This is shown by the lower total advection t
errors generated by the Stream scheme compared to the Rider—Kothe scheme when
the same free surface reconstruction technique. The reason for the lower boundary
errors generated by the Stream algorithm can be explained using Fig. 17.

Figure 17 shows example donating regions for a right cell boundary calculated us
four alternative multidimensional advection schemes. In all cases the horizontal compo
of the velocity at the boundary is assumed to be directed toward the right, and the I
velocity field may contain nonuniform vorticity.

As shown by Fig. 17, it is evident that the Stream algorithm will produce the donati
region which most faithfully represents the actual donating region for a given cell bound

(a) : (b)

(c) (d)

FIG. 17. Example donating regions defined using the (a) DDR, (b) Rider—Kothe, (c) Pwtkaki and
(d) Stream schemes.
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as the donating region may traverse as many computational cells as the time step al
and it is not limited in form to simple straight-sided geometries. This donating regi
flexibility is what produces the lower values for the cell boundary flux terms under t
Stream scheme. Obviously the relative advantages of the Stream flux calculation techr
canonly be realized when the velocity field is not uniform, a fact supported by the transla
advection test results of Section 3.1.

Determining the rate of convergence of the cell boundary flux terms is more difficult. T
error convergence rates calculated during the reversed single vortex tests are a combir
of all the error convergence rate terms which were givenin Egs. (47) and (49). Unfortuna
as the errors generated during the reversed spiral tests are dominated by the free s
reconstruction errors, it is difficult to determine the relative magnitudes of each of -
constituent convergence rates. Consequently, no conclusions as to the magnitpide of
nz can be drawn.

Some general observations can be made from Fig. 17 about the different multidimensi
advection techniques. The Defined Donating Region (DDR) algorithm, developed by Ha
and Fletcher [6], appears to be the least accurate of the alternative schemes. However
crossing a boundary under this method can only originate from the one donating cell adje
tothe boundary. This property ensures that under the DDR scheme fluid volume is conse
rigorously, and no fluid flotsam or wisps are produced. Thus, the DDR scheme is applic
to fluid dynamics problems where stability of the free surface interface is paramount.

Donating regions defined by either the Rider—Kothe or Puekett. [15] schemes may
traverse one, two, or three cells. This produces a level of accuracy greater than the |
scheme, but it is at the expense of fluid volume conservation. As the donating region:s
defined independently for each cell boundary, when the velocity field is spatially varyi
donating regions can overlap or notinclude some fluid regions Rider and Kothe [16]. Col
quently, both the Rider—Kothe and Pucledtal. schemes require a local fluid redistribution
algorithm in order to achieve fluid conversation.

The Stream scheme also requires a local fluid redistribution algorithm, but the reasol
its inclusion is significantly different to the reason it is included in other multidimensior
schemes. The purpose for the redistribution algorithm under the Stream scheme is to c«
errors resulting from the approximate integration technique. As the user can specify
accuracy of the integration technique through the variablexm the user has control over
the dependence on the fluid redistribution algorithm. This is not the case with other Vv
advection algorithms.

5. CONCLUSIONS

A new VOF advection algorithm, termed the Stream scheme, has been presented
algorithm uses a linear piecewise free surface reconstruction method, combined w
unique fully multidimensional boundary flux integration technique. The performance
the new algorithm has been compared against the performance of other VOF adve
schemes which use a variety of interface reconstruction techniques and a variety of bour
flux calculation techniques. In almost all tests performed, the Stream algorithm displa
a level of accuracy higher than the alternative algorithms, although possibly at a gre
computational expense.

Additionally, an analysis of errors generated by the Stream scheme when perforn
an advection calculation has been included. It was found that, in general, free sur
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re
of

construction errors dominate total advection test errors. The error minimization met
free surface gradient calculation due to Puckett [14] generally produces spatially :

ond order surface reconstructions, while the gradient calculation method due to You
[20] produces lower order reconstructions. Interestingly, when using a piecewise linea
construction technique, surface reconstruction errors are minimized when the time st
maximized; however, the reconstruction error remains bounded as the time step is red

to

zero, ensuring the viability of the technique.
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